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Abstract

To perform tasks specified by natural language instructions,
autonomous agents need to extract semantically meaning-
ful representations of language and map it to visual ele-
ments and actions in the environment. This problem is called
task-oriented language grounding. We propose an end-to-
end trainable neural architecture for task-oriented language
grounding in 3D environments which assumes no prior lin-
guistic or perceptual knowledge and requires only raw pixels
from the environment and the natural language instruction as
input. The proposed model combines the image and text rep-
resentations using a Gated-Attention mechanism and learns a
policy to execute the natural language instruction using stan-
dard reinforcement and imitation learning methods. We show
the effectiveness of the proposed model on unseen instruc-
tions as well as unseen maps, both quantitatively and qual-
itatively. We also introduce a novel environment based on a
3D game engine to simulate the challenges of task-oriented
language grounding over a rich set of instructions and envi-
ronment states.

1 Introduction
Artificial Intelligence (AI) systems are expected to perceive
the environment and take actions to perform a certain task
(Russell and Norvig 1995). Task-oriented language ground-
ing refers to the process of extracting semantically mean-
ingful representations of language by mapping it to visual
elements and actions in the environment in order to perform
the task specified by the instruction.

Consider the scenario shown in Figure 1, where an agent
takes natural language instruction and pixel-level visual in-
formation as input to carry out the task in the real world. To
accomplish this goal, the agent has to draw semantic cor-
respondences between the visual and verbal modalities and
learn a policy to perform the task. This problem poses sev-
eral challenges: the agent has to learn to recognize objects
in raw pixel input, explore the environment as the objects
might be occluded or outside the field-of-view of the agent,
ground each concept of the instruction in visual elements
or actions in the environment, reason about the pragmatics
of language based on the objects in the current environment
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Figure 1: An example of task-oriented language grounding in the
3D Doom environment with sample instructions. The test set con-
sists of unseen instructions.

(for example instructions with superlative tokens, such as
‘Go to the largest object’) and navigate to the correct object
while avoiding incorrect ones.

To tackle this problem, we propose an architecture that
comprises of a state processing module that creates a joint
representation of the instruction and the images observed by
the agent, and a policy learner to predict the optimal ac-
tion the agent has to take in that timestep. The state pro-
cessing module consists of a novel Gated-Attention multi-
modal fusion mechanism, which is based on multiplicative
interactions between both modalities (Dhingra et al. 2017;
Wu et al. 2016).

The contributions of this paper are summarized as fol-
lows: 1) We propose an end-to-end trainable architecture
that handles raw pixel-based input for task-oriented lan-
guage grounding in a 3D environment and assumes no prior
linguistic or perceptual knowledge. We show that the pro-
posed model generalizes well to unseen instructions as well
as unseen maps 1. 2) We develop a novel Gated-Attention
mechanism for multimodal fusion of representations of ver-
bal and visual modalities. We show that the gated-attention
mechanism outperforms the baseline method of concatenat-
ing the representations using various policy learning meth-
ods. The visualization of the attention weights in the gated-
attention unit shows that the model learns to associate at-
tributes of the object mentioned in the instruction with the
visual representations learned by the model. 3) We intro-
duce a new environment, built over ViZDoom (Kempka et
al. 2016), for task-oriented language grounding with a rich

1See demo videos at https://goo.gl/rPWlMy



Figure 2: The proposed model architecture to estimate the policy given the natural language instruction and the image showing the first-person
view of the environment.

set of actions, objects and their attributes. The environment
provides a first-person view of the world state, and allows for
simulating complex scenarios for tasks such as navigation.

2 Related Work
Grounding Language in Robotics. In the context of
grounding language in objects and their attributes, Guadar-
rama et al. (2014) present a method to ground open vocab-
ulary to objects in the environment. Several works look at
grounding concepts through human-robot interaction (Chao,
Cakmak, and Thomaz 2011; Lemaignan et al. 2012). Other
works in grounding include attempts to ground natural
language instructions in haptic signals (Chu et al. 2013)
and teaching robot to ground natural language using ac-
tive learning (Kulick et al. 2013). Some of the work that
aims to ground navigational instructions include (Guadar-
rama et al. 2013), (Bollini et al. 2013) and (Beetz et al.
2011), where the focus was to ground verbs like go, fol-
low, etc. and spatial relations of verbs (Tellex et al. 2011;
Fasola and Mataric 2013).

Mapping Instructions to Action Sequences. Chen and
Mooney (2011) and Artzi and Zettlemoyer (2013) present
methods based on semantic parsing to map navigational in-
structions to a sequence of actions. Mei, Bansal, and Walter
(2015) look at neural mapping of instructions to sequence
of actions, along with input from bag-of-word features ex-
tracted from the visual image. While these works focus on
grounding navigational instructions to actions in the envi-
ronment, we aim to ground visual attributes of objects such
as shape, size and color.

Deep reinforcement learning using visual data. Prior
work has explored using Deep Reinforcement learning ap-
proaches for playing FPS games (Lample and Chaplot 2016;
Kempka et al. 2016; Kulkarni et al. 2016). The challenge
here is to learn optimal policy for a variety of tasks, includ-
ing navigation using raw visual pixel information. Chaplot
et al. (2016) look at transfer learning between different tasks
in the Doom Environment. In all these methods, the policy
for each task is learned separately using a deep Q-Learning
(Mnih et al. 2013). In contrast, we train a single network for
multiple tasks/instructions. Zhu et al. (2016) look at target-
driven visual navigation, given the image of the target ob-
ject. We use the natural language instruction and do not have
the visual image of the object. Yu, Zhang, and Xu (2017)
look at learning to navigate in a 2D maze-like environment
and execute commands, for both seen and zero-shot setting,

where the combination of words are not seen before. Misra,
Langford, and Artzi (2017) also look at mapping raw visual
observations and text input to actions in a 2D Blocks envi-
ronment. While these works also looks at executing a variety
of instructions, they tackle only 2D environments. Oh et al.
(2017) look at zero-shot task generalization in a 3D environ-
ment. Their method tackles long instructions with several
subtasks and a wide variety of action verbs. However, the
position of the agent is discretized like 2D Mazes and their
method encodes some prior linguistic knowledge in a anal-
ogy making objective.

Compared to the prior work, this paper aims to address
grounding of natural language instruction in a challenging
3D setting involving raw-pixel input, continuous agent posi-
tions and partially observable envrionment, which poses ad-
ditional challenges of perception, exploration and reasoning.
Unlike many of the previous methods, our model assumes
no prior linguistic or perceptual knowledge, and is trainable
end-to-end.

3 Problem Formulation
We tackle the problem of task-oriented language grounding
in the context of target-driven visual navigation conditioned
on a natural language instruction, where the agent has to
navigate to the object described in the instruction. Consider
an agent interacting with an episodic environment E . In the
beginning of each episode, the agent receives a natural lan-
guage instruction (L) which indicates the description of the
target, a visual object in the environment. At each time step,
the agent receives a raw pixel-level image of the first per-
son view of the environment (It), and performs an action
at. The episode terminates whenever the agent reaches any
object or the number of time steps exceeds the maximum
episode length. Let st = {It, L} denote the state at each
time step. The objective of the agent is to learn an optimal
policy π(at|st), which maps the observed states to actions,
eventually leading to successful completion of the task. In
this case, the task is to reach the correct object before the
episode terminates. We consider two different learning ap-
proaches for language grounding using target-driven visual
navigation: (1) Imitation Learning (Bagnell 2015): where
the agent has access to an oracle which specifies the optimal
action given any state in the environment; (2) Reinforcement
Learning (Sutton and Barto 1998): where the agent receives
a positive reward when it reaches the target object and a neg-
ative reward when it reaches any other object.



Figure 3: Gated-Attention unit architecture.

4 Proposed Approach
We propose a novel architecture for task-oriented visual lan-
guage grounding, which assumes no prior linguistic or per-
ceptual knowledge and can be trained end-to-end. The pro-
posed model is divided into two modules, state processing
and policy learning, as shown in Figure 2.

State Processing Module: The state processing module
takes the current state st = {It, L} as the input and cre-
ates a joint representation for the image and the instruc-
tion. This joint representation is used by the policy learner
to predict the optimal action to take at that timestep. It
consists of a convolutional network (LeCun, Bengio, and
others 1995) to process the image It, a Gated Recurrent
Unit (GRU) (Cho et al. 2014) network to process the in-
struction L and a multimodal fusion unit that combines
the representations of the instruction and the image. Let
xI = f(It; θconv) ∈ Rd×H×W be the representation of
the image, where θconv denote the parameters of the con-
volutional network, d denotes number of feature maps (in-
termediate representations) in the convolutional network
output, while H and W denote the height and width of
each feature map. Let xL = f(L; θgru) be the represen-
tation of the instruction, where θgru denotes the param-
eters of the GRU network. The multimodal fusion unit,
M(xI , xL) combines the image and instruction representa-
tions. Many prior methods combine the multimodal repre-
sentations by concatenation (Mei, Bansal, and Walter 2015;
Misra, Langford, and Artzi 2017). We develop a multimodal
fusion unit, Gated-Attention, based on multiplicative inter-
actions between instruction and image representation.

Concatenation: In this approach, the representations of
the image and instruction are simply flattened and concate-
nated to create a joint state representation:

Mconcat(xI , xL) = [vec(xI); vec(xL)],

where vec(.) denotes the flattening operation. The concate-
nation unit is used as a baseline for the proposed Gated-
Attention unit as it is used by prior methods (Mei, Bansal,
and Walter 2015; Misra, Langford, and Artzi 2017).

Gated-Attention: In the Gated-Attention unit, the in-
struction embedding is passed through a fully-connected lin-
ear layer with a sigmoid activation. The output dimension of
this linear layer, d, is equal to the number of feature maps
in the output of the convolutional network (first dimension
of xI ). The output of this linear layer is called the attention

Figure 4: A3C policy model architecture.

vector aL = h(xL) ∈ Rd, where h(.) denotes the fully-
connected layer with sigmoid activation. Each element of
aL is expanded to a H × W matrix. This results in a 3-
dimensional matrix, M(aL) ∈ Rd×H×W whose (i, j, k)th

element is given by: MaL
[i, j, k] = aL[i]. This matrix is

multiplied element-wise with the output of the convolutional
network:

MGA(xI , xL) =M(h(xL))� xI =M(aL)� xI ,
where � denotes the Hadamard product (Horn 1990). The
architecture of the Gated-Attention unit is shown in Figure 3.
The whole unit is differentiable which makes the architec-
ture end-to-end trainable.

The proposed Gated-Attention unit is inspired by the
Gated-Attention Reader architecture for text comprehension
(Dhingra et al. 2017). They integrate a multi-hop archi-
tecture with a Gated-attention mechanism, which is based
on multiplicative interactions between the query embed-
ding and the intermediate states of a recurrent neural net-
work document reader. In contrast, we propose a Gated-
Attention multimodal fusion unit which is based on multi-
plicative interactions between the instruction representation
and the convolutional feature maps of the image representa-
tion. This architecture can be extended to any application of
multimodal fusion of verbal and visual modalities.

The intuition behind Gated-Attention unit is that the
trained convolutional feature maps detect different attributes
of the objects in the frame, such as color and shape. The
agent needs to attend to specific attributes of the objects
based on the instruction. For example, depending on the
whether the instruction is “Go to the green object”, “Go to
the pillar” or “Go to the green pillar” the agent needs to at-
tend to objects which are ‘green’, objects which look like a
‘pillar’ or both. The Gated-Attention unit is designed to gate
specific feature maps based on the attention vector from the
instruction, aL.

Policy Learning Module
The output of the multimodal fusion unit (Mconcat orMGA)
is fed to the policy learning module. The architecture of the
policy learning module is specific to the learning paradigm:
(1) Imitation Learning or (2) Reinforcement Learning.

For imitation learning, we consider two algorithms, Be-
havioral Cloning (Bagnell 2015) and DAgger (Ross, Gor-
don, and Bagnell 2011). Both the algorithms require an ora-
cle that can return an optimal action given the current state.



Figure 5: Sample starting states and bird’s eye view of the map (not
visible to the agent) showing agent and object locations in Easy,
Medium and Hard modes.

The oracle is implemented by extracting agent and target
object locations and orientations from the Doom game en-
gine. Given any state, the oracle determines the optimal ac-
tion as follows: The agent first reorients (using turn left,
turn right actions) towards the target object. It moves for-
ward (move forward action), reorienting towards the target
object if deviation of the agent’s orientation is greater than
the minimum turn angle supported by the environment.

For reinforcement learning, we use the Asynchronous Ad-
vantage Actor-Critic (A3C) algorithm (Mnih et al. 2016)
which uses a deep neural network to learn the policy and
value functions and runs multiple parallel threads to update
the network parameters. We also use the entropy regulariza-
tion for improved exploration as described by (Mnih et al.
2016). In addition, we use the Generalized Advantage Esti-
mator (Schulman et al. 2015) to reduce the variance of the
policy gradient (Williams 1992) updates.

The policy learning module for imitation learning con-
tains a fully connected layer to estimate the policy function.
The policy learning module for reinforcement learning us-
ing A3C (shown in Figure 4) consists of an LSTM layer,
followed by fully connected layers to estimate the policy
function as well as the value function. The LSTM layer is
introduced so that the agent can have some memory of pre-
vious states. This is important as a reinforcement learning
agent might explore states where all objects are not visible
and need to remember the objects seen previously.

5 Environment
We create an environment for task-oriented language
grounding, where the agent can execute a natural language
instruction and obtain a positive reward on successful com-
pletion of the task. Our environment is built on top of the
ViZDoom API (Kempka et al. 2016), based on Doom, a clas-
sic first person shooting game. It provides the raw visual in-
formation from a first-person perspective at every timestep.
Each scenario in the environment comprises of an agent and
a list of objects (a subset of ViZDoom objects) - one correct
and rest incorrect in a customized map. The agent can in-
teract with the environment by performing navigational ac-
tions such as turn left, turn right, move forward. Given an
instruction “Go to the green torch”, the task is considered
successful if the agent is able to reach the green torch cor-

rectly. The customizable nature of the environment enables
us to create scenarios with varying levels of difficulty which
we believe leads to designing sophisticated learning algo-
rithms to address the challenge of multi-task and zero-shot
reinforcement learning.

An instruction is a combination of (action, attribute(s),
object) triple. Each instruction can have more than one at-
tribute but we limit the number of actions and objects to
one each. The environment allows a variety of objects to be
spawned at different locations in the map. The objects can
have various visual attributes such as color, shape and size2.
We provide a set of 70 manually generated instructions1. For
each of these instructions, the environment allows for auto-
matic creation of multiple episodes, each randomly created
with its own set of correct object and incorrect objects. Al-
though the number of instructions are limited, the combi-
nations of correct and incorrect objects for each instruction
allows us to create multiple settings for the same instruc-
tion. Each time an instruction is selected, the environment
generates a random combination of incorrect objects and the
correct object in randomized locations. One of the signifi-
cant challenges posed for a learning algorithm is to under-
stand that the same instruction can refer to different objects
in the different episodes. For example, “Go to the red object”
can refer to a red keycard in one episode, and a red torch
in another episode. Similarly, “Go to the keycard” can refer
to keycards of various colors in different episodes. Objects
could also occlude each other, or might not even be present
in the agent’s field of view, or the map could be more com-
plicated, making it difficult for the agent to make a decision
based solely on the current input, stressing the need for effi-
cient exploration.

Our environment also provides different modes with re-
spect to spawning of objects each with varying difficulty
levels (Figure 5): Easy: The agent is spawned at a fixed lo-
cation. The candidate objects are spawned at five fixed loca-
tions along a single horizontal line along the field of view of
the agent. Medium: The candidate objects are spawned in
random locations, but the environment ensures that they are
in the field of view of the agent. The agent is still spawned at
a fixed location. Hard: The candidate objects and the agent
are spawned at random locations and the objects may or may
not be in the agents field of view in the initial configuration.
The agent needs to explore the map to view all the objects.

6 Experimental Setup
We perform our experiments in all of the three environment
difficulty modes, where we restrict the number of objects to
5 for each episode (one correct object, four incorrect objects
and the agent are spawned for each episode). During train-
ing, the objects are spawned from a training set of 55 instruc-
tions, while 15 instructions pertaining to unseen attribute-
object combinations are held out in a test set for zero-shot
evaluation. During training, at the start of each episode, one
of the train instructions is selected randomly. A correct target
object is selected and 4 incorrect objects are selected at ran-
dom. These objects are placed at random locations depend-

2See Appendix for the list of objects and instructions



Figure 6: Comparison of the performance of the proposed Gated-Attention (GA) unit to the baseline Concatenation unit using Reinforcement
learning algorithm, A3C for (a) easy, (b) medium and (c) hard environments.

ing on the difficulty level of the environment. The episode
terminates if the agent reaches any object or time step ex-
ceeds the maximum episode length (T = 30). The evalua-
tion metric is the accuracy of the agent which is success rate
of reaching the correct object before the episode terminates.
We consider two scenarios for evaluation:
(1) Multitask Generalization (MT), where the agent is
evaluated on unseen maps with instructions in the train set.
Unseen maps comprise of unseen combination of objects
placed at randomized locations. This scenario tests that the
agent doesn’t overfit to or memorize the training maps and
can execute multiple instructions or tasks in unseen maps.
(2) Zero-shot Task Generalization (ZSL), where the agent
is evaluated on unseen test instructions. This scenario tests
whether the agent can generalize to new combinations of
attribute-object pairs which are not seen during the training.
The maps in this scenario are also unseen.

Baseline Approaches
Reinforcement Learning: We adapt (Misra, Langford, and
Artzi 2017) as a reinforcement learning baseline in the pro-
posed environment. Misra, Langford, and Artzi (2017) looks
at jointly reasoning on linguistic and visual inputs for mov-
ing blocks in a 2D grid environment to execute an instruc-
tion. Their work uses raw features from the 2D grid, pro-
cessed by a CNN, while the instruction is processed by an
LSTM. Text and visual representations are combined us-
ing concatenation. The agent is trained using reinforcement
learning and enhanced using distance based reward shaping.
We do not use reward shaping as we would like the method
to generalize to environments where the distance from the
target is not available.
Imitation Learning: We adapt (Mei, Bansal, and Walter
2015) as an imitation learning baseline in the proposed en-
vironment. Mei, Bansal, and Walter (2015) map sequence
of instructions to actions, treated as a sequence-to-sequence
learning problem, with visual state input received by the de-
coder at each decode timestep. While they use a bag-of-
visual words representation for visual state, we adapt the
baseline to directly process raw pixels from the 3D environ-
ment using CNNs.

To ensure fairness in comparison, we use exact same ar-
chitecture of CNNs (to process visual input), GRUs (to pro-
cess textual instruction) and policy learning across baseline
and proposed models. This reduces the reinforcement learn-

ing baseline to A3C algorithm with concatenation multi-
modal fusion (A3C-Concat), and imitation learning baseline
to Behavioral Cloning with Concatenation (BC-Concat).

Hyper-parameters
The input to the neural network is the instruction and an
RGB image of size 3x300x168. The first layer convolves
the image with 128 filters of 8x8 kernel size with stride 4,
followed by 64 filters of 4x4 kernel size with stride 2 and
another 64 filters of 4x4 kernel size with stride 2. The archi-
tecture of the convolutional layers is adapted from previous
work on playing deathmatches in Doom (Chaplot and Lam-
ple 2017). The input instruction is encoded through a Gated
Recurrent Unit (GRU) (Chung et al. 2014) of size 256.

For the imitation learning approach, we run experiments
with Behavioral Cloning (BC) and DAgger algorithms in an
online fashion, which have data generation and policy up-
date function per outer iteration. The policy learner for imi-
tation learning comprises of a linear layer of size 512 which
is fully-connected to 3 neurons to predict the policy func-
tion (i.e. probability of each action). In each data generation
step, we sample state trajectories based on oracle’s policy in
BC and based on a mixture of oracle’s policy and the cur-
rently learned policy in DAgger. The mixing of the policies
is governed by an exploration coefficient, which has a linear
decay from 1 to 0. For each state, we collect the optimal ac-
tion given by the policy oracle. Then the policy is updated
for 10 epochs over all the state-action pairs collected so far,
using the RMSProp optimizer (Tieleman and Hinton 2012).
Both methods use Huber loss (Huber 1964) between the es-
timated policy and the optimal policy given by the policy
oracle.

For reinforcement learning, we run experiments with A3C
algorithm. The policy learning module has a linear layer of
size 256 followed by an LSTM layer of size 256 which en-
codes the history of state observations. The LSTM layer’s
output is fully-connected to a single neuron to predict the
value function as well as three other neurons to predict the
policy function. All the network parameters are shared for
predicting both the value function and the policy function
except the final fully connected layer. All the convolutional
layers and fully-connected linear layers have ReLu activa-
tions (Nair and Hinton 2010). The A3C model was trained
using Stochastic Gradient Descent (SGD) with a learning
rate of 0.001. We used a discount factor of 0.99 for calculat-



Model Parameters Easy Medium Hard
MT ZSL MT ZSL MT ZSL

Imitation
Learning

BC Concat 5.21M 0.86 0.71 0.23 0.15 0.20 0.15
BC GA 5.09M 0.97 0.81 0.30 0.23 0.36 0.29
DAgger Concat 5.21M 0.92 0.73 0.45 0.23 0.19 0.13
DAgger GA 5.09M 0.94 0.85 0.55 0.40 0.29 0.30

Reinforcement
Learning

A3C Concat 3.44M 1.00 0.80 0.80 0.54 0.24 0.12
A3C GA 3.39M 1.00 0.81 0.89 0.75 0.83 0.73

Table 1: The accuracy of all the models with Concatenation and Gated-Attention (GA) units. A3C Concat and BC Concat are the adapted
versions of Misra, Langford, and Artzi (2017) and Mei, Bansal, and Walter (2015) respectively for the proposed environment. All the accuracy
values are averaged over 100 episodes.

ing expected rewards and run 16 parallel threads for each ex-
periment. We use mean-squared loss between the estimated
value function and discounted sum of rewards for training
with respect to the value function, and the policy gradient
loss using for training with respect to the policy function.

7 Results & Discussions
For all the models described in section 4, the performance
on both Multitask and Zero-shot Generalization is shown in
Table 1. The performance of A3C models on Multitask Gen-
eralization during training is plotted in Figure 6.

Performance of GA models: We observe that models
with the Gated-Attention (GA) unit outperform models with
the Concatenation unit for Multitask and Zero-Shot General-
ization. From Figure 6 we observe that A3C models with GA
units learn faster than Concat models and converge to higher
levels of accuracy. In hard mode, GA achieves 83% accuracy
on Multitask Generalization and 73% on Zero-Shot General-
ization, whereas Concat achieves 24% and 12% respectively
and fails to show any considerable performance. For Imita-
tion Learning, we observe that GA models perform better
than Concat, and that as the environment modes get harder,
imitation learning does not perform very well as there is a
need for exploration in medium and hard settings. In con-
trast, the inherent extensive exploration of the reinforcement
learning algorithm makes the A3C model more robust to the
agent’s location and covers more state trajectories.

Policy Execution : Figure 9 shows a policy execution of
the A3C model in the hard mode for the instruction short
green torch. In this figure, we demonstrate the agent’s abil-
ity to explore the environment and handle occlusion. In this
example, none of the objects are in the field-of-view of the
agent in the initial frame. The agent explores the environ-
ment (makes a 300 degree turn) and eventually navigates
towards the target object. It has also learned to distinguish
between a short green torch and tall green torch and to avoid
the tall torch before reaching the short torch3.

Analysis of Attention Maps: Figure 7 shows the heatmap
for values of the attention vector for different instructions
grouped by object type of the target object (additional at-
tention maps are given in the supplementary material). As
seen in the figure, dimension 18 corresponds to ‘armor’, di-
mensions 8 corresponds to the ‘skullkey’ and dimension 36
corresponds to the ‘pillar’. Also, note that there is no dimen-

3Demo videos: https://goo.gl/rPWlMy

sion which is high for all the instructions in the first group.
This indicates that the model also recognizes that the word
‘object’ does not correspond to a particular object type, but
rather refers to any object of that color (indicated by dotted
red boxes in 7). These observations indicate that the model
is learning to recognize the attributes of objects such as color
and type, and specific feature maps are gated based on these
attributes. Furthermore, the attention vector weights on the
test instructions (marked by * in figure 7) also indicate that
the Gated-Attention unit is also able to recognize attributes
of the object in unseen instructions. We also visualize the t-
SNE plots for the attention vectors based on attributes, color
and object type as shown in Figure 8. The attention vectors
for objects of red, blue, green, and yellow are present in clus-
ters whereas those for instructions which do not mention the
object’s color are spread across and belong to the clusters
corresponding to the object type. Similarly, objects of a par-
ticular type present themselves in clusters. The clusters in-
dicate that the model is able to recognize object attributes
as it learns similar attention vectors for objects with similar
attributes.

8 Conclusion
In this paper we proposed an end-to-end architecture for
task-oriented language grounding from raw pixels in a 3D
environment, for both reinforcement learning and imita-
tion learning. The architecture uses a novel multimodal
fusion mechanism, Gated-Attention, which learns a joint
state representation based on multiplicative interactions be-
tween instruction and image representation. We observe that
the models (A3C for reinforcement learning and Behav-
ioral Cloning/DAgger for imitation learning) which use the
Gated-Attention unit outperform the models with concate-
nation units for both Multitask and Zero-Shot task general-
ization, across three modes of difficulty. The visualization of
the attention weights for the Gated-Attention unit indicates
that the agent learns to recognize objects, color attributes
and size attributes.
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Figure 7: Heatmap of the values of the 64-dimensional attention vector for different instructions
grouped by object type and sub-grouped by object color. The test instructions are marked by *. The
red boxes indicate that certain dimensions of the attention vector get activated for particular attributes
of the target object referred in the instruction.

Figure 8: The t-SNE visualization of
the attention vectors showing clus-
ters based on object color, type and
size.

Figure 9: This figure shows an example of the A3C policy execution at different points for the instruction ‘Go to the short green torch’. Left:
Navigation map of the agent, Right: frames at each point. A: Initial frame: None of the objects are visible. B: agent has turned so that objects
are in the field of view. C : agent successfully avoids the tall green torch. D : agent moves towards the short green torch. E :agent reaches
target.
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A Doom objects
The ViZDoom environment supports spawning of several objects of various colors and sizes. The types of objects available are
Columns, Torches, Armors and Keycards. In our experiments, we use several of these objects, which are shown in Figure 10.

Figure 10: Objects of various colors and sizes used in the environment

B Instructions
The list of 70 navigational instructions that was used to train and test the system in given in the Table 2.

Instruction Type Instruction

Size + Color tall green torch, short red object, short red pillar, short red torch, tall red object,
tall blue object, tall green object, tall red pillar, tall green pillar, short blue torch,
tall red torch, short green torch, short green object, short blue object,
tall blue torch, short green pillar

Color + Size red short object, green tall torch, red short pillar, red short torch, red tall object,
green tall object, blue tall object, red tall pillar, green tall pillar,
red tall torch, blue tall torch, green short object, green short torch,
blue short object, green short pillar, blue short torch

Color blue torch, red torch, green torch, yellow object,
green armor, tall object, red skullkey, red object, green object
blue object, red pillar, green pillar, red keycard, red armor, blue skullkey,
blue keycard, yellow keycard, yellow skullkey

Object Type torch, keycard, skullkey, pillar, armor

SuperlativeSize+Color smallest yellow object, smallest blue object, smallest green object,
largest blue object, largest red object, largest green object,
largest yellow object, smallest red object

SuperlativeSize largest object, smallest object

Size short torch, tall torch ,tall pillar ,short pillar ,short object, tall object

Table 2: List of instructions. Each instruction of Go to the X, where each ‘X’ is each entry in the table

C Attention Maps
The attention maps for different instructions grouped based on description is shown in 11 and grouped based on color is shown
in figure 12.



Figure 11: Attention vector output for different instructions grouped by description. The test instructions are marked by *.

Figure 12: Attention vector output for different instructions grouped by color. The test instructions are marked by *.


