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Abstract
We consider the problem of spatial path planning.
In contrast to the classical solutions which op-
timize a new plan from scratch and assume ac-
cess to the full map with ground truth obstacle
locations, we learn a planner from the data in a
differentiable manner that allows us to leverage
statistical regularities from past data. We pro-
pose Spatial Planning Transformers (SPT), which
given an obstacle map learns to generate actions
by planning over long-range spatial dependencies,
unlike prior data-driven planners that propagate in-
formation locally via convolutional structure in an
iterative manner. In the setting where the ground
truth map is not known to the agent, we lever-
age pre-trained SPTs in an end-to-end framework
that has the structure of mapper and planner built
into it which allows seamless generalization to
out-of-distribution maps and goals. SPTs outper-
form prior state-of-the-art differentiable planners
across all the setups for both manipulation and
navigation tasks, leading to an absolute improve-
ment of 7-19%.

1. Introduction
The problem of path planning has been a bedrock of robotics.
Given an obstacle map of an environment and a goal loca-
tion, the task is to output the shortest path to the goal loca-
tion starting from any position in the map. We consider path
planning with spatial maps. Building a top-down spatial
map is common practice in robotic navigation as it provides
a natural representation of physical space (Durrant-Whyte
& Bailey, 2006). Robotic manipulation can also be naturally
phrased via spatial map using the formalism of configuration
spaces (Lozano-Perez, 1990), as shown in Fig 1. This prob-
lem has been studied in robotics for several decades, and
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Figure 1. Spatial Path Planning: The raw observations (top left)
and obstacles can be represented spatially via top-down map in nav-
igation (left) and via configuration space in manipulation (right).

classic planning algorithms include Dijkstra et al. (1959),
PRM (Kavraki et al., 1996), RRT (LaValle & Kuffner Jr,
2001), RRT* (Karaman & Frazzoli, 2011), etc.

Our objective is to develop methods that can learn to plan
from data. However, a natural question is why do we need
learning for a problem which has stable classical solutions?
There are two key reasons. First, classical methods do not
capture statistical regularities present in the natural world,
(for e.g., walls are mostly parallel or perpendicular to each
other), because they optimize a plan from scratch for each
new setup. This also makes analytical planning methods to
be often slow at inference time which is an issue in dynamic
scenarios where a more reactive policy might be required
for fast adaptation from failures. A learned planner repre-
sented via a neural network can not only capture regularities
but is also efficient at inference as the plan is just a result
of forward-pass through the network. Second, a critical
assumption of classical algorithms is that a global ground-
truth obstacle space must be known to the agent ahead of
time. This is in stark contrast to biological agents where
cognitive maps are not pixel-accurate ground truth location
of agents, but built through actions in the environment, e.g.,
rats build an implicit map of the environment incrementally
through trajectories enabling them to take shortcuts (Tol-
man, 1948). A learned solution could not only provide the
ability to deal with partial, noisy maps and but also help
build maps on the fly while acting in the environment by
backpropagating through the generated long-range plans.
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Figure 2. Local vs Long-distance value propagation. Figure showing an example of number of iterations required to propagate distance
values over a map using local and long-distance value propagation. The obstacle map and goal location shown on the left and the
distance value predictions over 5 iterations is shown on the right (distance values increase from blue to yellow). Prior methods based on
convolutional networks use local value propagation and require many iterations to propagate values accurately over the whole map (top
right). Our method is based on long-distance value propagation between points without any obstacle between them. This type of value
propagation can cover the whole map in 3 iterations in this example (bottom right).

Several recent works have proposed data-driven path plan-
ning models (Tamar et al., 2016; Karkus et al., 2017;
Nardelli et al., 2019; Lee et al., 2018). Similar to how clas-
sical algorithms, like Dijkstra et al. (1959), move outward
from the goal one cell at a time to predict distances itera-
tively based on the obstacles in the map, current learning-
based spatial planning models propagate distance values in
only a local neighborhood using convolutional networks.
This kind of local value propagation requires O(D) itera-
tions, where D is the shortest-path distance between two
cells. For two corner cells in a map of size M ×M , D can
vary from M to M2. In theory, however, the optimal paths
can be computed much more efficiently with total iterations
that are on the order of number of obstacles rather than the
map size. For instance, consider two points with no obstacle
between them, an efficient planner could directly connect
them with interpolated distance. This is possible only if
the model can perform long-range reasoning in the obstacle
space which is a challenge.

In this work, our goal is to capture this long-range spa-
tial relationship. Transformers (Vaswani et al., 2017) are
well suited for this kind of computation as they treat the in-
puts as sets and propagate information across all the points
within the set. Building on this, we propose Spatial Plan-
ning Transformers (SPT) which consists of attention heads
that can attend to any part of the input. The key idea be-
hind the design of the proposed model is that value can be
propagated between distant points if there are no obstacles
between them. This would reduce the number of required
iterations to O(nO) where nO is the number of obstacles
in the map. Figure 2 shows a simple example where long-

distance value propagation can cover the entire map within
3 iterations while local value propagation takes more than
5 iterations – this difference grows with the complexity of
the obstacle space and map size. We compare the perfor-
mance of SPTs with prior state-of-the-art learned planning
approaches, VIN (Tamar et al., 2016) and GPPN (Lee et al.,
2018), across both navigation as well as manipulation se-
tups. SPTs achieve significantly higher accuracy than these
prior methods for the same inference time and show over
10% absolute improvement when the maps are large.

Next, we turn to the case when the map is not known apriori.
This is a practical setting when the agent either has access
to a partially known map or just know it through the trajec-
tories. In psychology, this is known as going from route
knowledge to survey knowledege (Golledge et al., 1995)
where animals aggregate the knowledge from trajectories
into a cognitive map. We operationalize this setup by for-
mulating an end-to-end differentiable framework, which in
contrast to having a generic parametric policy learning (Glas-
machers, 2017), has the structure of mapper and planner
built into it. We first pre-train the SPT planner to capture a
generic data-driven prior and then backpropagate through it
to learn a mapper that maps raw observations to an obstacle
map. This allows us to learn without requiring map supervi-
sion or interaction. Learned mapper and planner not only
allow us to plan for new goal locations at inference but also
generalize to unseen maps. SPT outperforms both classi-
cal algorithms and prior learning-based planning methods
on both manipulation and navigation tasks resulting in an
absolute improvement of over 18%.
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Figure 3. Spatial Planning Transformer (SPT). Figure showing an overview of the proposed Spatial Planning Transformer model. It
consists of 3 modules: an Encoder E to encode the input, a Transformer network T responsible for planning, and a Decoder D decoding
the output of the Transformer into action distances.

2. Preliminaries and Problem Definition
We represent the input spatial map as a matrix, m, of size
M ×M with each element being 1, denoting obstacles, or
0, denoting free space. The goal location is also represented
as a matrix, g, of size M ×M with exactly one element
being 1, denoting the goal location, and rest 0s. The input
to the spatial planning model, x, consists of matrices m and
g stacked, x = [m, g], where x is of size 2×M ×M . The
objective of the planning model is to predict y which is of
sizeM×M , consisting of action distances of corresponding
locations to the goal. Here, action distance is defined to be
the minimum number of actions required to reach the goal.

For navigation, m is a top-down obstacle map, and g rep-
resents the goal position on this map. For manipulation, m
represents the obstacles in the configuration space of 2-dof
planar arm with joint angles denoted by θ1 and θ2. Each
element (i, j) inm indicate whether the configuration of the
arm with joint angles θ1 = i and θ2 = j, would lead to a
collision. g represents the goal configuration of the arm. In
the first set of experiments, we will assume that m is known
and in the second set of experiments, m is not known and
the agent receives observations, o, from its sensors instead.

3. Methods
We design a spatial planning model, called Spatial Planning
Transformer (SPT), capable of long-distance information

propagation. We first describe the design of the SPT model,
which takes in a map and a goal as input and predicts the
distance to the goal from all locations. We then describe
how the SPT model can be used as a planning module to
train end-to-end learning models, which take in raw sensory
observations and goal location as input and predict action
distances without having access to the map.

3.1. SPT: Spatial Planning Transformers

To propogate information over distant points, we use the
Transformer (Vaswani et al., 2017) architecture. The self-
attention mechanism in a Transformer can learn to attend
to any element of the input. The allows the model to learn
spatial reasoning over the whole map concurrently. Figure 3
shows an overview of the SPT model, which consists of
three modules, an Encoder E to encode the input, a Trans-
former network T responsible for spatial planning, and a
Decoder D decoding the output of the Transformer into
action distances.

Encoder. The Encoder E computes the encoding of the
input x: xI = E(x). The input x ∈ {0, 1}2×M×M con-
sisting of the map and goal is first passed through a 2-layer
convolutional network (LeCun et al., 1998) with ReLU ac-
tivations to compute an embedding for each input element.
Both layers have a kernel size of 1× 1, which ensures that
the embedding of all the obstacles is identical to each other,
and the same holds true for free space. The output of this
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Figure 4. End-to-end Mapping and Planning. Figure showing an overview of end-to-end mapping and planning model for both the
navigation and manipulation tasks.

convolutional network is of size d ×M ×M , where d is
the embedding size. This output is then flattened to get xI
of size d×M2 and passed into the Transformer network.

Transformer. The Transformer network T converts the in-
put encoding into the output encoding: xO = T (xI). It first
adds the positional encoding to the input encoding which
enables the Transformer model to distinguish between the
obstacles at different locations. We use a constant sinusoidal
positional encoding (Vaswani et al., 2017):

p(2i,j) = sin(j/C2i/d), p(2i+1,j) = cos(j/C2i/d)

where p ∈ Rd×M2

is the positional encoding, j ∈
{1, 2, . . . ,M2} is the position of the input, i ∈
{1, 2, . . . , d/2}, and C =M2 is a constant.

The positional encoding of each element is added to their
corresponding input encoding to get Z = xI + p . Z is then
passed through N = 5 identical Transformer layers (fTL) to
get xO (see Appendix A for a background on Transformers).

Decoder. The Decoder D computes the distance prediction
ŷ from xO using a position-wise fully connected layer:

ŷi =WT
DxT,i + bD

where xT,i ∈ Rd×1 is the input at position i ∈
1, 2, . . . ,M2, WD ∈ Rd×1, bD ∈ R are parameters of
the Decoder shared across all positions i and ŷi ∈ R is the
distance prediction at position i. The distance prediction
at all position are reshaped into a matrix to get the final
prediction ŷ ∈ RM,M . The entire model is trained using
pairs of input x and output y datapoints with mean-squared
error as the loss function.

3.2. Planning under unknown maps
The SPT model described above is designed to predict ac-
tion distances given a map as input. However, in many
applications, the map of the environment is often not known.

In such cases, an autonomous agent working in a realistic
environment needs to predict the map from raw sensory
observations. While it is possible to train a separate mapper
model to predict maps from observations, this often requires
map annotations which are expensive to obtain and often in-
accurate. In contrast, demonstration trajectories consisting
of observations and optimal actions are more readily avail-
able or easier to obtain in many robotics applications. One
of the key benefits of learning-based differentiable spatial
planning over classical planning algorithms is that it can be
used to learn mapping just from action supervision in an end-
to-end fashion without having access to ground-truth maps.
To demonstrate this benefit, we train an end-to-end mapping
and planning model to predict action distances from sensor
observations for both navigation and manipulation tasks.

The end-to-end model consists of two modules, a Mapper
(fM ) and a Planner (fP ), as illustrated in Figure 4. The
Mapper is used to predict the map m̂ from sensor observa-
tions o and the Planner is a spatial planning model to predict
action distances, ŷ, from the predicted map m̂:

ŷ = fP (m̂) = fP (fM (o))

For navigation, o is the set of first-person RGB camera
images each of size 3 × H × W . We sample 4 images,
one for each orientation, at each valid location in the map.
For invalid locations, we pass an empty image of 0s for all
orientations. Thus, for a map of size M ×M , observation o
consists of 4M2 images for all locations and 4 orientations
similar to the setup in Lee et al. (2018). For manipulation, o
is a top-down view of the operational space with obstacles of
size P ×P , where each element is 1 or 0 denoting obstacles
or free space. We use different Mapper architectures for
navigation and manipulation experiments.

The Navigation Mapper module predicts a single value be-
tween 0 and 1 for each image in o indicating whether the
cell in the front of the image is an obstacle or not. The
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Figure 5. Spatial Planning Examples. Figure showing 3 examples of the input, the predictions using the proposed SPT model and the
baselines, and the ground truth for map size M = 30. The obstacles are shown in blue, free space in purple and goal in yellow in the
leftmost input column. The predictions and ground truth in the rest of the column are color-coded from blue to yellow to represent
increasing action distance.

architecture of the Navigation mapper consists of ResNet18
convolutional layers followed by fully-connected layers (see
Appendix C for details). Each cell can have up to 4 predic-
tions (from images corresponding to the four neighboring
cells facing the current cell), which are aggregated using
max-pooling to get a single prediction. Predictions for all
the cells are arranged in a matrix to get the whole map
prediction which is then passed to the Planner module.

The Manipulation Mapper module needs to predict which
configurations of the arm would lead to a collision. For
each configuration (θ1, θ2), the mapper module needs to
check whether any point in this configuration consists of
an obstacle. A Transformer-based model is well suited
to learn this function as well as it can attend to arbitrary
locations in the operational space to predict the obstacles
in the configuration space. We use the same architecture of
the SPT model as the Manipulation Mapper as well, with
the only difference being the encoder consisting of 3 × 3
kernel size convolutional layers instead of 1× 1 to encode
the P × P observation space to a M ×M representation.

The Planner module is the SPT model with encoder, trans-
former, and decoder units as described in the previous sub-
section. It is pretrained on synthetic maps and its weights
are frozen during end-to-end training. We train the entire

end-to-end mapping and planning model with pairs of input
observations o and output action distances y using standard
supervised learning with the mean-squared error loss func-
tion. Since the planning module is pretrained it expects
a structured map input, the mapper module learns to pre-
dict the map accurately such that the predicted map, when
passed through the planner, minimizes the action level loss.

4. Experiments & Results
We conduct experiments to test the effectiveness of the
proposed SPT model as compared to prior differentiable
planning methods. We first conduct experiments when the
map is known in Section 4.1. We then conduct experiments
when the map is not known in Section 4.2. In this setting,
the map needs to be predicted from sensory observations
without having access to map-level supervision using end-to-
end mapping and planning. We compare the SPT model with
prior differentiable planning models keeping the mapping
model identical across all learning-based methods.

4.1. Known maps
Datasets. We generate synthetic datasets for training the
spatial planning models for both navigation and manipula-
tion settings. For the navigation setting, we perform exper-
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Navigation Manipulation Overall
Method M=15 M=30 M=50 M=18 M=36

VIN 86.19 83.62 80.84 75.06 74.27 80.00
GPPN 97.10 96.17 91.97 89.06 87.23 92.31
SPT 99.07 99.56 99.42 99.24 99.78 99.41

Table 1. Generalization to in-distribution maps. Average planning accuracy of the proposed model Spatial Planning Transformer (SPT)
as compared to the baselines on in-distribution test sets for both the navigation and manipulation experiments.

Navigation Manipulation Overall
More Obstacles Real-World More Obstacles

Method M=15 M=30 M=50 M=15 M=30 M=50 M=18 M=36

VIN 49.05 62.05 70.64 49.91 56.67 71.16 65.27 59.81 60.57
GPPN 90.68 89.93 84.86 90.11 91.07 88.32 79.86 80.79 86.95
SPT 93.34 92.71 92.03 95.96 94.70 95.39 98.16 99.18 95.18

Table 2. Generalization to out-of-distribution maps. Average planning accuracy of the proposed model Spatial Planning Transformer
(SPT) as compared to the baselines on out-of-distribution test sets for both the navigation and manipulation experiments.

iments with M ×M maps with three different map sizes,
M ∈ {15, 30, 50}. For manipulation, we experiment with
two map sizes, M ∈ {18, 36}, corresponding to 20◦ and
10◦ bins for each link. In each map, we randomly generate
omin = 0 to omax = 5 obstacles. Dataset generation details
are provided in the Appendix B.

For both the settings, we generate training, validation, and
test sets of size 100K/5K/5K maps. For each map, we
choose a random free space cell as the goal location. The
action space consists of 4 actions: north, south, east, west.
For the navigation task, the map boundaries are considered
as obstacles, while for the manipulation task the cells on
the left and right boundaries and top and bottom boundaries
are connected to each other since angles are circular. The
ground truth action distances are calculated using the Dijk-
stra algorithm (Dijkstra et al., 1959). Unreachable locations
and obstacles are denoted by −1 in the ground truth.

In addition to testing on unseen maps with the same distribu-
tion, we also test on two types of out-of-distribution datasets:
(1) More Obstacles, where we generate omin = 15 to
omax = 20 obstacles per map, and (2) Real-world, where
the top-down maps are generated from reconstructions of
real-world scenes in the Gibson dataset (Xia et al., 2018).

Hyperparameters and Training. For training the SPT
model, we use Stochastic Gradient Descent (Bottou, 2010)
for optimization with a starting learning rate of 1.0 and a
learning rate decay of 0.9 per epoch. We train the model
for 40 epochs with a batch size of 20. We use N = 5
Transformer layers each with h = 8 attention heads and a
embedding size of d = 64. The inner dimension of the fully
connected layers in the transformer is dfc = 512. We use
the same architecture with the same hyperparameters for
training the SPT model for both navigation and manipula-
tion for all map sizes.

Baselines. Our baselines are prior spatial planning models,
Value Iteration Networks (VIN) (Tamar et al., 2016) and
Gated Path-Planning Networks (GPPN) (Lee et al., 2018).
For tuning the hyperparameter (K) for the number of itera-
tions in both the baselines, we consider all values of K in
multiples of 10 such that the inference time of the baseline
is comparable to the inference time of the SPT model (≤ 1.1
times). For each setting, we tune K and the learning rate to
maximize performance on the validation set.

Metrics. We use average action prediction accuracy as
the metric. Distance prediction is converted to actions by
finding the minimum distance cell among the 4 neighboring
cells for each location. When multiple actions are optimal,
predicting any optimal action is considered to be a correct
prediction. The accuracy is averaged over all free space
locations over all maps in the test set.

Results. The planning accuracy of all the methods for both
the navigation and manipulation tasks on the in-distribution
test sets are shown in Table 1 and on the out-of-distribution
test sets are shown in Table 2. The proposed SPT model
outperforms both the baselines across all settings achieving
an overall accuracy of 99.41% vs 92.31% (in-distribution)
and 95.18% vs 86.95% (out-of-distribution) as compared
to the best baseline. The performance of the SPT model is
stable as the map size increases while the performance of
the baselines drops considerably. We believe this is because
both the baselines need to use a larger number of iterations
to cover a larger map (K = 60 iterations for GPPN andK =
90 iterations for VIN for M = 50) since the information
propagation is local in VIN and GPPN. The optimization
becomes difficult for such deep models. In contrast, the SPT
model uses a constant N = 5 layers for all map sizes.

The improvement in the performance of SPT over the base-
lines is larger in the manipulation task because the baselines
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Navigation Manipulation Overall
Method Map Acc Plan Acc Map Acc Plan Acc Map Acc Plan Acc

Classical 64.43 45.20 - - - -
VIN 60.92 47.77 81.25 66.45 71.08 57.11
GPPN 69.06 45.70 85.57 82.13 77.31 63.91
SPT 82.58 66.16 98.96 98.42 90.77 82.29

Table 3. End-to-End Mapping and Planning Results. Average mapping and planning accuracy of the proposed model Spatial Planning
Transformer (SPT) as compared to the baselines for end-to-end mapping and planning experiments.

based on convolution operations are not well suited for prop-
agating information looping over the edges of the map. In
contrast, the SPT model can use self-attention to attend to
any part of the map and learn to propagate information over
the map edges.

Visualizations. In Figure 5, we show examples of predic-
tions of the SPT model as compared to the baselines for
3 different input maps and goals from 3 different test sets.
The examples show that the baselines are not able to predict
the distances of distant cells accurately. This is because
they propagate information in a local neighborhood that can
not reach distant cells in the limited inference time budget
(K = 30 for VIN and K = 20 for GPPN). In contrast,
the SPT model is able to predict distances of distant cells
more accurately with N = 5 layers indicating that it learns
long-range information propagation. Additional examples
are provided in Appendix E.

4.2. Unknown maps

In the above experiments, we compared the planning per-
formance of different methods under perfect knowledge of
the map m. In this section, we test the efficacy of spatial
planning methods when map m is unknown and needs to be
predicted from sensor observations o.

Datasets. For manipulation, we generate synthetic datasets
of size M = 18 using the same process as described in
Section 4. We discretize the operation space into a P × P
image with P = 90 which is used as the observation o. The
train/test sets are of size 100K/5K.

For navigation, we use the Gibson dataset (Xia et al., 2018)
to sample maps of size M = 15 where each cell is 0.25m2

area. We get the camera images at the navigable locations in
all 4 orientations using the Habitat simulator (Savva et al.,
2019). The set of camera images each of size 3×H ×W
act as the observation o for the navigation task, where H =
W = 128. The train and test sets consist of 72 and 14
distinct scenes identical to the standard train and val splits
in the Habitat simulator. We sample 500 maps in each scene
creating training/test sets of size 36K/7K. Each sampled
map is rotated to a random orientation.

Training. We load the weights of different models trained
on synthetic data from the previous section. We then train
the end-to-end model using the same action distance pre-
diction loss while keeping the planner weights frozen. The
architecture of the mapper module is identical across dif-
ferent planning methods. Metrics. We report both map
accuracy and planning accuracy for both the tasks.

Baselines. In addition to using VIN and GPPN as baselines,
we also use a classical mapping and planning baseline for
navigation. Since there is no depth input available, we used
the Monocular depth estimation model from Hu et al. (2019)
for predicting the map which is then used for planning using
Dijkstra as suggested by Mishkin et al. (2019).

Results. Table 3 shows the end-to-end mapping and plan-
ning results. SPT outperforms both GPPN and VIN by a
large margin across both the tasks achieving an overall plan
accuracy of 82.29% vs 63.91%. Table 3 also shows that the
mapper learnt using end-to-end training with a pretrained
SPT model is able to achieve an accuracy of 98.96% for ma-
nipulation and 82.58% for navigation, without receiving any
map-level supervision. SPT also outperforms the classical
mapping and planning baseline. These results demonstrate
a key benefit of learning-based differentiable planners as
compared to classical analytical planning algorithms. As
SPT outperforms VIN and GPPN at spatial planning, it also
leads to a better map accuracy (90.77% vs 77.31%).

5. Analysis
Runtime Comparison. To demonstrate one of the bene-
fits of learning-based planners over classical planning algo-
rithms, we compare the runtime of SPT to Dijkstra (Dijkstra
et al., 1959) and A* (Hart et al., 1968) algorithms in Ta-
ble 4. The results indicate that SPT is 1.24× to 20.22×
faster than classical planning algorithms with the runtime
benefit improving with the increase in map size.

Long-range value propagation. The SPT model is de-
signed to capture long-range spatial relationships in plan-
ning and propagate value over distant points. In Fig 6, we
plot mean-squared error in planning vs action distance for
different methods on the navigation task (known map) with
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Runtime per map in ms

Method M=15 M=30 M=50

Dijkstra 4.17 43.82 371.05
A* 3.02 35.38 294.70
SPT 2.44 4.72 18.35

Table 4. Runtime comparison. Comparison of average runtime
per map in milli seconds for different methods. All values are
averaged over 10000 maps.

different map sizes. The figure shows that the difference be-
tween the planning error of SPT and the baselines increases
with action distances. This result indicates that SPT can
propagate values over longer distances more effectively as
compared to the baselines.

Sparse and Noisy supervision. In Section 4.2, we assumed
access to perfect and dense action-distance supervision. In
practice, if we were to get supervision from human trajecto-
ries, the supervision could be sparse, as we might not have
access to the optimal distance from all locations in the map,
and noisy as humans might not take the optimal actions
always and computing distances from human trajectories
might be noisy. To analyze the effect of not having dense
and perfect supervision for training the end-to-end mapping
and planning model, we consider three settings:
Noisy supervision: We add zero-mean Gaussian noise to
all ground-truth distance values with std. deviation, σ = 1.
Sparse supervision: Instead of providing ground-truth dis-
tances from all navigable locations, we provide distances
for only 5 trajectories to the same goal in the training maps.
Noisy and Sparse supervision: We provide noisy distances
for only 5 trajectories as supervision.

Figure 7 shows an example of noisy and sparse supervi-
sion. The results are shown in Table 5. The SPT model
maintains performance benefits over the baselines under
all the settings. Interestingly, under sparse supervision, the
map prediction accuracy drops, but the planning accuracy
does not drop as much. This is because the model learns to
predict the minimum map required to predict the action dis-
tances of all valid locations accurately as seen in examples
shown in Figure ?? in the Appendix.

Scalability. We chose an action space of 4 axis-aligned
actions in our experiments to replicate the evaluation setting
of our baselines. We believe higher dimensional action
spaces favor SPT as it does not rely on local convolutional
operations. To test whether SPT maintains performance
benefits in higher dimensional state and action spaces, we
conducted some experiments for the navigation task. We
relaxed the action space from 4 actions to 100 actions by
just allowing the agent to take any action in a 10x10 grid
around it (and using a low-level controller to go to any cell).

Figure 6. MSE vs Action Distance. Figure showing plots of mean-
square error (MSE) in planning vs action distance for different
methods on the navigation task with different map sizes.

The state space used for planning is discretized but the agent
moves in a continuous state space in the Habitat simulator.
We compute the continuous ground truth distance using
the Fast Marching Method (instead of Dijkstra) for training
with a larger action space, which allows us to accurately
compute the distance for all locations and not be constrained
by axis-aligned actions and distances.

SPT and the baselines are trained only on synthetic navi-
gation mazes for this experiment. During evaluation in the
Habitat simulator, we assume a perfect partial map based on
part of the environment seen in the observations so far for
planning. If the overall map size at this level of discretiza-
tion is higher than planning map size, we simply use greedy
planning in a window around the agent resulting in an “any-
time” variant similar to the classical planning algorithms.
This setup results in much finer-grained action space. SPT
achieves a navigation success rate of 78.0% as compared to
47.2% for GPPN and 43.5% for VIN baselines.

6. Related Work
Path planning in known or inferred maps, also known as
motion planning in robotics, is a well-explored problem led
by the seminal papers (Canny, 1988; Kavraki et al., 1996;
LaValle & Kuffner Jr, 2001; Karaman & Frazzoli, 2011).
Although there are learned variants of motion planners pro-
posed in the literature using gaussian processes (Ijspeert
et al., 2013; Ratliff et al., 2018), data-driven motion planners
using neural networks is a recent direction (Qureshi et al.,
2019; Bhardwaj et al., 2020; Qureshi et al., 2020). Prior
work has also studied the use of neural networks to learn the
heuristics and sampling strategies in classical planners Ichter
et al. (2018); Guez et al. (2018); Satorras & Welling (2021);
Khan et al. (2020). Learning for planning is more com-
mon in Markov Decision Process (MDPs) for computing
value function via dynamic programming based value itera-
tions (Bellman, 1966; Bertsekas et al., 1995). Planning and
learning in neural networks has been explored (Ilin et al.,
2007) with a successful general formulation provided by
value iteration networks (VIN) (Tamar et al., 2016) with
follow-ups to improve scalability and efficiency (Lee et al.,
2018; Karkus et al., 2017; Nardelli et al., 2019; Schleich
et al., 2019; Khan et al., 2018; Chen et al., 2020). However,
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Figure 7. Sparse and Noisy Supervision. Figure showing examples of a map and goal with different levels of supervision. Noisy
supervision adds gaussian noise to the ground truth distance values, and sparse supervision samples 5 trajectories for random starting
locations to the goal location.

Dense and Perfect
supervision

Noisy
supervision

Sparse
supervision

Noisy and Sparse
supervision

Method Map Acc Plan Acc Map Acc Plan Acc Map Acc Plan Acc Map Acc Plan Acc

VIN 81.25 66.45 75.68 60.78 70.16 60.23 70.22 58.97
GPPN 85.57 82.13 80.13 76.11 72.73 75.13 70.08 72.85
SPT 98.96 98.42 96.35 95.83 80.15 97.18 77.17 94.34

Table 5. Sparse and Noisy Supervision Results. Table showing the average mapping and planning accuracy of the proposed model
Spatial Planning Transformer (SPT) as compared to the baselines for end-to-end mapping and planning experiments under noisy and
sparse supervision settings for the manipulation task.

these models only capture local value propagation using
CNNs and are mostly applied in navigation setups. In con-
trast, proposed SPTs capture long-range spatial dependency
and easily scale to both navigation and manipulation.

Differentiable planning structure has also been explored
in reinforcement learning with model-free methods (Silver
et al., 2017; Oh et al., 2017; Zhu et al., 2017; Farquhar
et al., 2018) as well as off-policy RL (Eysenbach et al.,
2019; Laskin et al., 2020). Recent works also backpropagate
through learned planners to train the policy (Pathak et al.,
2018; Srinivas et al., 2018; Amos et al., 2018) and use
imagined rollouts of a learned world model for long-term
plans (Racanière et al., 2017; Hafner et al., 2019; Sekar et al.,
2019). Unlike our work, these works lack the structure of a
spatial planner.

Decomposing learning a controller into mapping and plan-
ning is common in robot navigation (Khatib, 1986; Elfes,
1987). Some works have explored joint mapping and plan-
ning (Elfes, 1989; Fraundorfer et al., 2012). Maps can also
be built from vision (Konolige et al., 2010; Fuentes-Pacheco
et al., 2015) with a learned mapper (Parisotto & Salakhut-
dinov, 2018; Karkus et al., 2020). There has been some
work on learning maps without using map annotations as
well (Gregor et al., 2019). For navigation specific applica-
tions, recent works proposed joint mapping and planning for
navigation (Gupta et al., 2017; Zhang et al., 2017; Savinov
et al., 2018; Chaplot et al., 2020b;a;c). However, most of
these works either require access to ground truth map or

assume interaction. Hence, they will first need to be trained
in simulation. In contrast, we show results when the map is
not known to the agent by learning just from trajectories and
can be directly learned from data collected in the real-world.

7. Discussion
The SPT model is designed to learn long-range spatial plan-
ning and it outperforms the baselines consistently across
multiple experimental settings on both navigation and ma-
nipulation tasks. End-to-end learning experiments demon-
strate that the SPT model can deal with unknown maps
by learning mapping without any map-supervision, high-
lighting one key benefit over classical planning algorithms.
SPT also offers runtime performance benefits over classical
planners. We showed that the SPT model scales much bet-
ter with increasing map sizes as compared to the baselines,
however larger map sizes lead to higher memory require-
ments. In the future, the recent advances in Transformer
architectures can be used to improve the memory efficiency
of SPTs, for example via hashing of keys and query (Kitaev
et al., 2020), or using a low-rank approximation to linearize
attention (Shen et al., 2021). Another way of tackling larger
maps is increasing the discretization to larger cells and using
low-level controllers to navigate between cells. SPT model
can also be used as a learned value function for sampling in
classical planning algorithms instead of heuristics.

License for Gibson dataset: http://svl.stanford.

edu/gibson2/assets/GDS_agreement.pdf

http://svl.stanford.edu/gibson2/assets/GDS_agreement.pdf
http://svl.stanford.edu/gibson2/assets/GDS_agreement.pdf
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A. Background: Transformers
The proposed spatial planning method is based on the Trans-
former model (Vaswani et al., 2017). A Transformer layer,
denoted by fTL, takes a tensor X 2 R

d⇥S as input, where
d is the embedding size and S is the size of the input. It
consists of two sublayers, a multi-head self-attention layer
(fSA) and a position-wise fully connected layer (fFC). There
is a residual connection around each sublayer, followed by
layer normalization (Ba et al., 2016) (LN):

R = LN(fSA(X) +X), Y = fTL(X) = LN(fFC(R) +R)

where R, Y 2 R
d⇥S are the intermediate and final repre-

sentations, respectively.

The multi-head self-attention (fSA) layer has h attention
heads, each computes a scaled dot-product attention over
queries Q, keys K and values V , which are all different
projections of the input X:

Qi = W
T

Q,i
X, Ki = W

T

K,i
X, V = W

T

V,i
X

Zi = Attention(Qi,Ki, Vi) = softmax

 
QiK

T

i
p
dk

!
Vi

where Q,K 2 R
dk⇥S , V 2 R

dv⇥S , i 2 1, 2, . . . , h dk

and dv are hyper-parameters and all W s are parameters.
The output of all attention heads, Zis, are concatenated and
projected to the same dimension as the input. Finally, the
position-wise fully connected (fFC) layer applies two linear
transformations to each position with a ReLU activation to
the output of the multi-head attention.

B. Dataset Details
We generate synthetic datasets for training the spatial plan-
ning models for both navigation and manipulation settings.
For the navigation setting, we perform experiments with
M ⇥M maps with two different map sizes, M 2 {15, 30}.
We randomly generate omin = 0 to omax = 5 obstacles
in each map, where each obstacle is an rectangle at a ran-
dom location with each side being a random length from
1 to M/2. All the rectangular obstacles are rotated in two
random orientations.

For the manipulation setting, we consider a reacher task
using a planar arm with 2 degrees of freedom. We use an
operational space of size P ⇥ P . Each link of the arm is
of size P/4. The arm is centered at the center of the opera-
tional space. Let the orientation of two links be denoted by
✓1 and ✓2. We assume both the links can freely rotate in a
plane, ✓1, ✓2 2 [0, 2⇡). For each environment, we generate
omin = 0 to omax = 5circular obstacles centered at a ran-
dom location 0.25P to 0.75P distance away from the center,
with a random radius between 0.05P and D�0.15P where
D is the distance of the center of the obstacle from the center

of the operational space. We convert each environment to a
configuration space map of size M ⇥M , where each cell
(i, j) denotes whether the arm will collide with an obstacle
when ✓1 = 2⇡i/M and ✓2 = 2⇡j/M . We experiment with
two map sizes, M 2 {18, 36}, corresponding to 20� and
10� bins for each link. The choice of P does not affect the
map as the collision check for each cell in the configura-
tion space is performed in the continuous operational space
where all distances are relative to P .

C. Navigation Mapper Architecture Details
The Navigation Mapper module predicts a single value be-
tween 0 and 1 for each image in o indicating whether the
cell in the front of the image is an obstacle or not. The
architecture of the Navigation mapper consists of ResNet18
convolutional layers followed by 3 fully-connected layers
of size 256, 128, and 1 as shown in Figure 8. Each cell can
have up to 4 predictions (from images corresponding to the
four neighboring cells facing the current cell), which are
aggregated using max-pooling to get a single prediction.

Figure 8. Navigation Mapper Architecture. Figure showing the
architecture of the Navigation Mapper.

D. Attention Visualization
We show the visualization of attention maps corresponding
to two different locations in Figure 9. Interestingly, we
noticed three consistent patterns: a) at least one of the at-
tention head out of eight captures obstacles (left), b) one of
the attention heads focuses on goal location (middle), and
c) some attention maps focus on nearby obstacles to get
accurate planning distance (right).

E. Examples
We show additional examples for navigation task for in-
distribution test set (in Figure 10), out-of-distribution More
Obstacles test set (in Figure 11) and Real-World test set (in
Figure 12) each with map size M = 30. Additional exam-
ples for manipulation task are shown for in-distribution test
set (in Figure 13) and for out-of-distribution More Obstacles
test set (in Figure 14).

We also visualize examples for the end-to-end mapping and
planning experiments for the manipulation task. We show
examples of map and action distance predictions using the
SPT model trained with dense and perfect supervision in
Figure 15 and with noisy and sparse supervision in Fig-
ure 16.
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Figure 9. Attention Visualization. Visualization of the attention heads learned by Spatial Planning Transformers. SPTs learn an attention
for each location in the map with respect to every other location.

Figure 10. Navigation in-distribution test set examples. Figure showing 3 examples of the input, the predictions using the proposed
SPT model and the baselines, and the ground truth for the Navigation in-distribution test set for map size M = 30.
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Figure 11. Navigation out-of-distribution More Obstacles test set examples. Figure showing 3 examples of the input, the predictions
using the proposed SPT model and the baselines, and the ground truth for the Navigation out-of-distribution More Obstacles test set for
map size M = 30.

Figure 12. Navigation out-of-distribution Real-World test set examples. Figure showing 3 examples of the input, the predictions using
the proposed SPT model and the baselines, and the ground truth for the Navigation out-of-distribution Real-World test set for map size
M = 30.
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Figure 13. Manipulation in-distribution test set examples. Figure showing 3 examples of the input, the predictions using the proposed
SPT model and the baselines, and the ground truth for the Manipulation in-distribution test set for map size M = 36.

Figure 14. Manipulation out-of-distribution More Obstacles test set examples. Figure showing 3 examples of the input, the predictions
using the proposed SPT model and the baselines, and the ground truth for the Manipulation out-of-distribution More Obstacles test set for
map size M = 36.
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Figure 15. Dense and Perfect Supervision. Figure showing examples of map and distance predictions using the SPT model trained with
dense and perfect action-level supervision.

Figure 16. Sparse and Noisy Supervision. Figure showing examples of map and distance predictions using the SPT model trained with
sparse and noisy action-level supervision.


