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Abstract
In this paper, we explore how we can build upon the data and models of Internet
images and use them to adapt to robot vision without requiring any extra labels. We
present a framework called Self-supervised Embodied Active Learning (SEAL). It
utilizes perception models trained on internet images to learn an active exploration
policy. The observations gathered by this exploration policy are labelled using 3D
consistency and used to improve the perception model. We build and utilize 3D
semantic maps to learn both action and perception in a completely self-supervised
manner. The semantic map is used to compute an intrinsic motivation reward
for training the exploration policy and for labelling the agent observations using
spatio-temporal 3D consistency and label propagation. We demonstrate that the
SEAL framework can be used to close the action-perception loop: it improves
object detection and instance segmentation performance of a pretrained perception
model by just moving around in training environments and the improved perception
model can be used to improve Object Goal Navigation.

1 Introduction
Even though computer vision started out as a field to aid embodied agents (robots) [21], in current
times it has evolved into Internet computer vision, where the focus is on training models for and
from Internet data. Fueled by the successes of supervised learning, today’s models can successfully
classify, detect and segment out objects in Internet images reasonably well [19]. This raises a natural
question: would we need to restart from scratch and gather similarly large-scale labeled datasets to
get computer vision to work for embodied agents, or can we somehow bootstrap off the progress
made in Internet computer vision?

Internet data comprises of sparse and unrelated snapshots of the world, carefully chosen by humans.
On the one hand, this simplifies the problem as models only need to reason about a small and
well-chosen subset of possible views of the world. On the other, this makes learning hard. The dog in
image_0032 in the ImageNet dataset, is different from the dog in image_0033, and there is no way
to understand how the dog in image_0032 will look like from another view. In contrast, an active
agent, embodied in a 3D environment, experiences views of a 3D consistent world. Spatio-temporal
continuity in views of the underlying 3D world can allow better inference at test time, and label
efficient learning at train time. These effects are further amplified, as the agent can actively choose the
views it experiences to maximize learning. Thus, in contrast to Internet computer vision, embodiment
opens up the possibility of deriving supervision from spatio-temporal continuity and interaction.

Such self-supervision for physical tasks (e.g. collisions, graspability) can be done through the use
of appropriate sensors [17, 36]. How to do so for semantic tasks, such as segmenting and detecting
objects is less clear, and is the focus of our work in this paper. We build off models from Internet
computer vision and show how their performance can be improved through self-supervised interaction.
We show that a) this can be done purely via interaction, without needing any additional supervision,
b) improved models exhibit better performance in test environments as is, c) models can be improved

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

https://devendrachaplot.github.io/projects/seal


Figure 1: Self-supervised Embodied Active Learning. Our framework called Self-supervised Embodied
Active Learning (SEAL) consists of two phases, Action, where we learn an active exploration policy, and
Perception, where we train the Perception Model on data gathered using the exploration policy and labels
obtained using spatio-temporal label propagation. Both action and perception are learnt in a completely self-
supervised manner without requiring access to the ground-truth semantic annotations or map information.

further through small amounts of self-supervised interaction in the test environment. We also show
that improved perception can, in turn, improve the performance at interactive tasks.

We propose a framework called Self-supervised Embodied Active Learning (SEAL) as shown in
Figure 1. It consists of two phases, one for learning Action, and another for learning Perception.
During the Action phase, the agent learns a self-supervised exploration policy to gather observations
of objects with at least one highly confident viewpoint. We propose an intrinsic motivation reward
called Gainful Curiosity to train this policy. In the Perception phase, the learned exploration policy
is used to gather a single episode of observations in an environment. We propose a method called
3DLabelProp to obtain labels for these observations in a self-supervised fashion. Both the action and
perception phases involve constructing a 3D Semantic Map. The agent observations in an episode are
used to construct an episodic 3D semantic map. The map is used to compute the Gainful Curiosity
reward during the Action phase. And during the perception phase, the semantic labels in the 3D map
are projected on the agent’s original observations using 3DLabelProp to generate the supervision for
training the embodied perception model.

Our experiments demonstrate that the SEAL framework can be used to close the action-perception
loop. Perceptual models allow the agent to act in the world and collect data that improve the perception
models. Improved perception models can, in turn, improve the agent’s policy for interacting with
the world. We first use SEAL framework to improve object detection and instance segmentation
performance of a pretrained perception model (Mask RCNN [19]) from 34.82/32.54 AP50 scores to
40.02/36.23 AP50 scores by just moving around in training environments, without having access to
any additional human annotations. By allowing the agent to explore the test environment for a single
episode, we can further improve the performance to 41.23/37.28 AP50 scores. Next, we also show
that this improved perception model can be used to improve the performance of an embodied agent at
Object Goal Navigation from 54.4% to 62.7% success rate.

2 Related Work
In this paper, we propose a technique for self-supervised improvement of perception through active
interaction, exploration, and 3D semantic mapping. Many papers tackle related problems and we
survey them here.

Self-supervised Learning. A number of papers focus on the design of label-free pretext tasks to
pre-train visual representations [1, 24, 57]. Most such works focus on learning a good generic feature
representation without access to any semantic labels. Our work is also self-supervised, we also
don’t rely on any external source of supervision during training. However, instead of producing
a generic feature representation, we produce improved object detection and segmentation models
through self-supervision. Our supervision comes from the 3D self-consistency of a given perception
model on different views of the data. Furthermore, we learn to actively seek data to conduct this
self-supervision on vs. past work that employs pre-collected datasets.

Domain Adaptation. Another related line of work is that of unsupervised domain adaptation [20,
47, 39], where the focus is to adapt models trained on one domain to work well on another domain
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without any labels, or any assumptions on the data that is available in the two domains. Our focus
here is orthogonal: we specifically focus on opportunities for self-supervision available in the context
of embodied agents and learn policies to gather data in the target domain that eases transfer. General
domain adaptation techniques could be used on top of our work.

Active Perception and Learning. Active interaction with an environment can improve performance
at test time by gaining information from better views (i.e. active perception [6, 2]), as well as at
train time to generate more training data or to mine harder examples for external labeling (i.e. active
learning [44]). Active learning and active perception have largely been thought of as two separate
bodies of research. Our proposed approach tackles both these problems, and we highlight key
differences from existing research.

Work in active learning focuses on the selection of data points from an unlabeled corpus for labeling
by an oracle (e.g. humans). Researchers have explored the use of prediction uncertainty [45, 16],
coverage [42] and meta-learning [28, 56] to learn such data selection functions. Our work departs from
standard active learning in two ways: we do not assume access to a pre-collected corpus of unlabeled
data, nor to a labeling oracle. We learn a policy to efficiently and autonomously acquire unlabeled
data, and rely on multi-view 3D consistency to derive supervision. This differentiates our work from
work in active learning [37, 44], and also recent works that relax one or the other requirements: the
need for oracles using spatio-temporal consistency to improve models using pre-collected unlabeled
videos [38, 46, 27], or oracle supervised active learning in embodied environments [11, 33].

Similarly, active perception has been studied over the last many years [6, 2]. Early methods used
information-theoretic measures to determine the next best view [12]. More recently focus has been on
learning a policy in an end-to-end fashion to directly improve metrics of interest [25, 55, 26, 3, 54].
There also has been some work to improve segmentation and object detection using Simultaneous
Localization and Mapping (SLAM) [58, 48]. The above works learn active interaction with an
environment to improve performance at test time by gaining information from better views. In contrast,
our focus is on active learning through interaction, i.e. learning how to explore an environment at
train time to automatically generate more training data which is used to improve perception. Our
proposed technique can also be used to scale up active perception to effectively detect and segment
objects in a large-scale 3D scene at test time (see the specialization setting in Sec 3). Rather than
exploring each object one at a time, we learn to explore the whole 3D scene at once. This improves
recognition performance for all objects in the scene in a single episode. Furthermore, unlike many
prior methods, our approach is completely self-supervised.

Learning through Interaction. Robot learning and reinforcement learning focus on learning to solve
interactive tasks directly through hit and trial interaction. However, there is also a small body of work
that seeks to improve perception models through unsupervised or self-supervised interaction. Unlike
prior work [13, 35, 23] which tackle bottom-up image segmentation or learning object representations
in table-top manipulation setting, we learn to improve object detection and instance segmentation
models in the context a mobile navigation agent. Parallel work from Fang et al. [14] also focuses on
improving object detection models using active data. Unlike their work, we learn a policy for data
collection, and aggregate information using 3D semantic maps.

3D Semantic Mapping. 3D mapping (reconstruction and localization) has been well studied, and is
a fairly mature sub-field of robotics and computer vision. We refer the readers to Fuentes-Pacheco
et al. [15] for a survey. Researchers have also considered the task of associating semantics with 3D
maps [32, 8]. We adopt and adapt these ideas to our setting, and focus on how we could use these
representations for learning active exploration policies to improve models for embodied perception.

3 Method
Our objective is to train an embodied agent to learn both action and perception by moving around in
a physical environment. We assume the agent is given access to a perception (object detection and
instance segmentation) model, fP , such as a MaskRCNN [19] pretrained on static Internet data. The
agent needs to learn a policy to move in the environment and use the experience to learn embodied
perception in a completely self-supervised manner without having access to the ground-truth semantic
annotations or map information.

We propose a framework called Self-supervised Embodied Active Learning (SEAL) to tackle this
problem. As shown in Figure 1, it consists of two phases, one for learning Action, and the other for
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Figure 2: 3D Semantic Mapping. The 3D Semantic Mapping module takes in a sequence of RGB (It) and
Depth (Dt) images and produces a 3D Semantic Map.

learning Perception. During the Action phase, the agent learns a self-supervised exploration policy to
gather useful observations. In the Perception phase, the learned exploration policy is used to gather a
single episode of observations in an environment. The observations are labeled in self-supervised
manner using 3D Label Propagation, which is then used for training the embodied perception model.
In our framework, both the Action and Perception phases require building a 3D semantic map from a
sequence of agent observations. We first describe the 3D Semantic Mapping module (Sec 3.1) and
then describe how it is utilized in both the phases to train the active exploration policy (Sec 3.2) and
the embodied perception model (Sec 3.3).

Generalization and Specialization. We employ this framework under two settings, Generalization
and Specialization. In the Generalization setting, the agent is allowed to train for 10 million frames
in the set of training environments and tested directly on a set of unseen test environments. In the
Specialization setting, after training, the agent is also allowed to explore each test environment for
a single episode of T (= 300) time steps. In both settings, the agent has to learn completely in a
self-supervised manner, without having access to the ground-truth semantic annotations or maps in
training or test environments. For the Generalization setting, the trained perception model is tested
on random images in the unseen test environments. For the Specialization setting, the second phase
is repeated for each test environment before testing on the unseen images in the test environment.

Agent Specification. We follow the agent specification from Chaplot et al. [9]. For each time step
t, the observation space consists of an RGB observation, It ∈ R3×WI×HI , a depth observation,
Dt ∈ R3×WI×HI and a 3-DOF pose sensor xt ∈ R3 denoting the x and y coordinates of the agent
and the orientation of the agent. The action space consists of 3 discrete actions: move forward
(25cm), turn left (30◦) and turn right (30◦). The agent camera height is 88cm.

3.1 3D Semantic Mapping
We use a voxel-based representation for the semantic 3D Map. The semantic map, m, is a 4D tensor
of size K × L×W ×H , where L, W , H , denote the 3 spatial dimensions, and K = C + 1, where
C is the number of semantic object categories. Among the K channels, the first channel denotes
whether the corresponding voxel (x-y-z location) is occupied or not and each of C channels stores
the score (between 0 and 1) of the corresponding voxel belonging to a particular object category. We
use a cubic voxel of size (5cm)3.

Figure 2 shows an overview of the 3D Semantic Mapping module. The map is initialized with all
zeros at the beginning of an episode, m0 = [0]K×L×W×H . The agent always starts at the center
of the map facing east at the beginning of the episode, x0 = (L/2,W/2, 0.0). At each time step
t, the pretrained MaskRCNN [19] (fP ) is to used to get semantic predictions from the input RGB
observation, It. The semantic predictions consist of the score for each pixel belonging to a particular
category obtained directly from the Mask-RCNN. If there are multiple predictions for the same pixel,
we take the maximum score for each category across all the predictions. The depth observation,
Dt, is used to compute an egocentric point cloud, cegot . Each point in this egocentric point cloud is
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Figure 3: Learning Action using Gainful Curiosity. We use a modular architecture for the Gainful Curiosity
Policy. The 3D Semantic Mapping module is used to construct and update the map, mt, at each time step t. The
Global Policy is used to sample long-term goal (gt). A deterministic Local Policy is used to plan a path to the
long-term goal and take low-level navigational actions. The Gainful Curiosity intrinsic motivation reward is
computed using the 3D Semantic Map.

associated with the corresponding semantic predictions. The egocentric point cloud is converted to a
geocentric point cloud, cgeot using geometric transformations based on the agent pose, xt, which is
then converted to a geocentric voxel representation vgeot ∈ RK×L×W×H using geometric projections.
In the voxel representation, the first channel among K channels represents occupancy, and the rest of
the C channels denote the maximum score for the voxel belonging to the corresponding semantic
category. This voxel representation is aggregated over time using channel-wise max pooling to get
the 3D Semantic Map.

3.2 Learning Action
The active exploration policy in SEAL needs to explore the environment to gather useful observations
for learning perception. Intuitively, we would like the agent to explore as many objects as possible
with a highly confident prediction for each object from at least one viewpoint. We require at least
one view with high confidence as the agent needs to learn in a self-supervised fashion. In the next
subsection, we describe how a highly confident prediction from one viewpoint can be used to label
other viewpoints using 3D consistency.

Gainful curiosity. We define an intrinsic motivation reward called Gainful Curiosity to train the active
exploration policy to learn such behavior of maximizing exploration of objects with high confidence.
We define ŝ(= 0.9) to be the score threshold for confident predictions. The Gainful Curiosity reward
is then defined to be the number of voxels in the 3D Semantic Map having greater than ŝ score for at
least one semantic category. This reward encourages the agent to find new objects and keep looking
at the object from different viewpoints until it gets a highly confident prediction for the object from at
least one viewpoint. It also encourages the agent to not spend time exploring walls and corners as
they do not belong to any object category. Unlike prior formulations of intrinsic motivation, such as
prediction-error curiosity [34] or temporal inconsistency-based semantic curiosity [11] which aim to
maximize uncertainty, Gainful Curiosity aims to gain definitive knowledge.

We use a modular architecture for the Gainful Curiosity policy inspired by prior work on modular
learning models for visual navigation [10, 9]. The architecture shown in Figure 3 consists of the
3D Semantic Mapping module to build the map as described earlier. The 3D Semantic Map (mt)
is passed as input to a Global Policy which selects a long-term goal (gt) or a waypoint, which is
essentially an x-y coordinate of the map. The Global Policy consists of convolutional layers followed
by fully connected layers. A deterministic Local Policy, which uses the Fast Marching Method [43]
for path planning, is used to navigate to the long-term goal using low-level navigation actions. The
Global Policy operates at a coarse time scale, sampling a goal every 25 local steps. It is trained to
maximize the intrinsic motivation reward with reinforcement learning.

3.3 Learning Perception
The trained exploration policy is used to sample trajectories in the training environments. For each
trajectory, we build the 3D Semantic Map as described above. The semantic predictions from the
Perception Model (fP ) for the observations in this trajectory might contain both false positives
(detecting an object when there is no object or predicting the wrong object category) and false
negatives (not detecting an object when there is an object present). Consequently, the 3D Semantic
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Figure 4: Learning Perception using 3DLabelProp. The agent trajectory is to used to create a semantic 3D
map of the environment. The map is labelled in a self-supervised manner using 3D consistency. The label for
each pixel in the agent trajectory is obtained using ray-tracing in the labeled map based on the agent’s pose.

Map will contain ambiguities with scores for multiple object categories for a given voxel that may or
may not belong to an object.

3DLabelProp. We propose a method called 3DLabelProp to obtain self-supervised labels from the
3D Semantic map. First, to perform disambiguation, we label each voxel to belong to the category
with the maximum score above ŝ. If all categories have a score less than ŝ for a voxel, we label
it as not belonging to any object category. After labeling each voxel in the map, we find the set
of connected voxels labeled with the same category to find object instances. We fill small holes
(< 0.25m3) in object instances and remove small objects (< 0.025m3) to get the final labeled
3D semantic map. The instance label for each pixel in each observation in the trajectory is then
obtained using ray-tracing in the labeled 3D map based on the agent’s pose as shown in Figure 4.
Pixel-wise instance labels are used to obtain masks and bounding boxes for each instance. Note that
this labeling process is completely self-supervised and does not require any human annotation. The
set of observations and self-supervised labels are used to fine-tune the pre-trained perception model.

4 Experiments
Setup. We use the Habitat simulator [40] with the Gibson dataset [50] for our experiments. The
Gibson dataset consists of scenes that are 3D reconstructions of real-world environments. We use a set
of 30 scenes from the Gibson tiny set for our experiments whose semantic annotations are available
from Armeni et al. [5]. We use a split of 25 and 5 scenes for training and testing identical to prior
work [9]. The list of training and test scenes is provided in the supplementary material. Following
the setup in prior work [11, 9], we use 6 common indoor object categories for all our experiments:
chair, couch, bed, toilet, TV, and potted plant. We randomly sample a set of 2500 images (500 per
test scene) and evaluate the final perception model trained using SEAL and the baselines on object
detection and instance segmentation tasks. The same test set is used for all the methods and for both
Generalization and Specialization settings. We report bounding box and mask AP50 scores for object
detection and instance segmentation, respectively. AP50 is the average precision with at least 50%
IOU. IOU is defined to be the intersection over union of the predicted and ground-truth bounding box
or the segmentation mask.

4.1 Hyperparameter and Architecture Details
Perception Model. We use a Mask-RCNN [19] using Feature Pyramid Networks [31] with a
ResNet-50 [18] backbone as the Perception model. The Mask-RCNN is pretrained on the MS-COCO
dataset [30] for object detection and instance segmentation. During the Perception phase, we fine-
tune the Mask-RCNN on the data gathered by the Gainful Curiosity policy and labeled using 3D
Label Propagation. We use Stochastic Gradient Descent [7] with a fixed learning rate of 0.0001 for
N = 5000 iterations. All other hyperparameters are set to default settings in Detectron2 [49].

Action Model. In the Gainful Curiosity model, the Global Policy is the only learnable component. It
is a 5 layer convolutional network (2×3D convolution layers + 3×2D convolution layers) followed
by 3 fully connected layers. In addition to the 3D Semantic map, we also pass the agent orientation
as a separate input, which is processed using an Embedding layer and added as an input to the fully-
connected layers. The Global Policy is trained using Proximal Policy Optimization [41] algorithm
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Table 1: Results. Performance of all the baselines as compared to the proposed SEAL framework for both
Generatlization and Specialization settings. We report bounding box and mask AP50 scores for Object Detection
and Instance Segmentation.

Generalization Specialization

Method Object
Detection

Instance
Segmentation

Object
Detection

Instance
Segmentation

Pretrained Mask-RCNN 34.82 32.54 34.82 32.54
Random Policy + Self-training [52] 33.41 31.89 34.11 31.23
Random Policy + Optical Flow [22] 33.97 32.34 34.33 32.22
Frontier Exploration [53] + Self-training [52] 33.78 32.45 33.29 32.50
Frontier Exploration [53] + Optical Flow [22] 35.22 31.90 34.19 32.12
Active Neural SLAM [10] + Self-training [52] 34.35 31.20 34.84 32.44
Active Neural SLAM [10] + Optical Flow [22] 35.85 32.22 35.90 33.12
Semantic Curiosity [11] + Self-training [52] 35.04 32.19 35.23 32.88
Semantic Curiosity [11] + Optical Flow [22] 35.61 32.57 35.71 33.29
SEAL 40.02 36.23 41.23 37.28

with 25 parallel threads, with each thread using one scene in the training set. We use a time horizon
of 20 steps, 12 mini-batches, and 4 epochs in each PPO update. Our PPO implementation is based
on [29]. The policy is trained with the Gainful Curiosity reward which is computed by counting the
the number of voxels explored with ŝ(= 0.9) score for at least one object category. We use Adam
optimizer with a learning rate of 0.000025, a discount factor of γ = 0.99, an entropy coefficient of
0.001, value loss coefficient of 0.5 for training the Global Policy.

4.2 Baselines
We are not aware of any methods directly comparable to the proposed method. We adapt prior
methods as separate baselines for Action and Perception phases and compare combinations of these
baselines to our SEAL framework. We implement the following Action baselines:

- Random Policy. A policy taking a random navigation action at each time step.

- Frontier Exploration [53]. This baseline uses the classical frontier-based exploration heuristic of
navigating to the nearest unexplored point to explore unseen environments.

- Active Neural SLAM [10]. Similar to our Gainful Curiosity policy, Active Neural SLAM is a
also modular map-based learning method. It builds a spatial top-down map and learns a higher-level
global policy to select waypoints in the top-down map space to maximize area coverage.

- Semantic Curiosity [11]. This baseline is closest to our Gainful Curiosity policy, which is trained
to maximize the temporal inconsistency in object detections and segmentation in a trajectory.

We implement the following Perception baselines:

- Self-Training. In this baseline, we train a Mask-RCNN on its own predictions using the data
collected by the exploration policy. This baseline is adapted from prior work on self-training which
shows improvement in image classification by training on large datasets of unlabelled images [52, 51].

- Optical Flow. In this baseline, we use optical flow [22] between consecutive images for label
propagation. Each pixel in the current image is labeled with the maximum score prediction of the
pre-trained Mask-RCNN over associated pixels in the previous, current, and next image. Optical flow
is also used by Eitel et al. [13] for learning segmentation in an interactive manipulation setting.

5 Results
We report the performance of the proposed SEAL framework and all the baselines for both the
Generalization and Specialization settings in Table 1. SEAL outperforms all the baselines by a large
margin, 40.02/36.23 vs 35.85/32.57 AP50 score for Generalization, and 41.23/37.28 vs 35.90/33.29
AP50 score for Specialization. SEAL also considerably improves over the Pretrained Mask-RCNN
baseline (41.23/37.28 vs 34.82/32.54 AP50 score for Specialization) while all the other baselines
perform worse or comparable to the Pretrained Mask-RCNN baseline. This indicates that the SEAL
Framework can be used to explore a physical environment and improve perception in a completely
self-supervised manner without requiring any human annotation.
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Figure 5: Example. Figure showing 3 frames in a trajectory gathered using the trained active exploration policy,
πA, the corresponding pretrained Mask-RCNN predictions, and the self-supervised labels obtained using the
3D Semantic Map. (1) The Mask-RCNN predictions contain false negatives, it fails to detect the couch and
the chair, (2) Mask-RCNN still fails to detect the couch, (3) MaskRCNN detects the couch but contains a false
positive prediction of the coffee table as a chair. The 3D Semantic Map (shown on the right) obtained using the
MaskRCNN predictions correctly consists of the couch and the chair. Self-supervised labels obtained using the
semantic map correctly identify the objects at all the 3 timesteps.

Qualitative example. In Figure 5, we show an example trajectory and corresponding trajectory
obtained through SEAL. The pretrained Mask-RCNN predictions (shown in the second row) contain
both false positives and false negatives and are inconsistent over time as they are based on individual
images. Since the MaskRCNN correctly recognizes the objects with a high score from at least one
viewpoint, they are correctly labeled in the 3D semantic map. Consequently, the self-supervised
labels obtained from the map using ray-tracing are accurate and consistent over time. More examples
are provided in the supplement.

Ablations. To understand and quantify the importance of both the Action and Perception phases in
SEAL, we perform experiments with several ablations. In each ablation, we replace the Action or the
Perception phase in SEAL with a corresponding baseline. Results in Table 4 indicate that both the
Action and Perception phases are important for the overall performance. The Perception phase is
more critical as replacing it with Self-training or Optical Flow drops the performance comparable
to the Pretrained Mask-RCNN. As noted in prior work [52], Self-Training requires large amounts
(millions of images) of unlabelled data to be effective which is not available in our setting. The
performance of Optical Flow is also limited as it can only aggregate information over consecutive
frames. This indicates that aggregating information using semantic 3D mapping and self-supervised
labeling using ray-tracing is crucial for the overall performance of the framework.

5.1 Closing the Action-Perception Loop: Object Goal Navigation

Table 2: Object Goal Navigation. Performance
of SEAL-improved perception model on the Ob-
ject Goal Navigation task. SEAL (Gen.) and
SEAL (Spec.) refer to SEAL perception models
from Generalization and Specialization settings.

Method Success SPL

SemExp [9] 0.544 0.199
SemExp + SEAL (Gen.) 0.611 0.323
SemExp + SEAL (Spec.) 0.627 0.331

We demonstrated that the SEAL framework can be
used to learn an active exploration policy to gather
data and improve perception models, i.e. we used
action to improve perception. In order to close the
perception-action loop i.e. to use perception to im-
prove action, we deploy the SEAL-improved percep-
tion model to a downstream Object Goal Navigation
task. We utilize the SemExp model from Chaplot
et al. [9] and replace the pretrained Mask-RCNN in
SemExp with the SEAL-improved perception model.
All the other model components and the experimental
setup is identical to [9]. As shown in Table 2, SEAL leads to large improvement, the SemExp +
SEAL Specialization perception model led to a success rate of 0.627 and a SPL [4] of 0.331 as
compared to 0.544 Success and 0.199 SPL for the SemExp model with the pretrained Mask-RCNN.
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Table 4: Ablation Results. Performance of all the ablations of the SEAL framework for both Generatlization
and Specialization settings. In each ablation, we replace the Action or Perception phase in SEAL with a baseline.
We report bounding box and mask AP50 scores for Object Detection and Instance Segmentation.

Generalization Specialization

Method Object
Detection

Instance
Segmentation

Object
Detection

Instance
Segmentation

Pretrained Mask-RCNN 34.82 32.54 34.82 32.54
SEAL w/o Action + Random Policy 35.43 31.22 35.77 31.79
SEAL w/o Action + Frontier Exploration [53] 37.39 33.49 37.99 34.55
SEAL w/o Action + Active Neural SLAM [10] 38.90 34.99 39.01 35.41
SEAL w/o Action + Semantic Curiosity [11] 38.39 35.20 39.21 35.62
SEAL w/o Perception + Self-training [52] 35.35 32.47 35.88 33.20
SEAL w/o Perception + Optical Flow [22] 35.65 32.49 35.92 33.44
SEAL 40.02 36.23 41.23 37.28

5.2 Extension: Weak Supervision
Table 3: Weak Supervision Results. Performance of a Mask-
RCNN naively fine-tuned with a few frames of labelled data
as compared using the proposed SEAL framework for label
propagation. We report bounding box and mask AP50 scores
for Object Detection and Instance Segmentation.

Fine-tuning Mask-RCNN SEAL

Num
labels

Object
Detection

Instance
Segmentation

Object
Detection

Instance
Segmentation

0 34.82 32.54 41.23 37.28
5 34.22 31.67 41.44 37.65
10 35.14 32.52 42.63 38.48

We demonstrated that the SEAL framework
can be used to improve perception and ac-
tion in a self-supervised fashion. Addition-
ally, it can also be used under the weak
supervision setting, where few frames in
each test environment are annotated by hu-
mans. For each annotated frame, we can
simply replace the pretrained MaskRCNN
predictions in the Perception phase with
human annotations with a score of 1. We
sample k frames with the highest average
entropy over voxels corresponding to all
pixels in the 3D semantic map and assume
they are human-annotated. In Table 3, we report the performance of a Mask-RCNN naively fine-tuned
with a few frames (k = 0, 5, 10) of labeled data as compared using the proposed SEAL framework for
label propagation. Naively fine-tuning Mask-RCNN with 10 labeled examples does not improve the
performance much. SEAL leads to a considerable performance improvement as labels are propagated
to other observations using 3D semantic mapping.

6 Discussion
We presented the Self-supervised Embodied Active Learning (SEAL) framework for closing the
action-perception loop. We demonstrated that the SEAL framework can be used to utilize a pretrained
perception model to learn an active exploration policy for gathering useful observations. The
observations gathered by the policy can be used to improve the pretrained perception model. Our
ablation experiments highlight the importance of both the Action and Perception phases. The SEAL-
improved perception can further be used to improve performance at Object Goal Navigation. The
entire framework is completely self-supervised, the agent learns a policy and improves perception by
just moving around in physical environments without having access to any human annotations.

The ability to learn in a self-supervised fashion comes at the cost of some limitations. The quality
of the 3D semantic map (and the labels obtained from it) is dependent on the performance of the
pretrained perception model. If the perception model never detects an object from any viewpoint, there
is no way to learn about the object without any additional supervision. Similarly, if the perception
model makes wrong predictions with high scores, these errors will be amplified by label propagation.

In the weak supervision extension, we explored how these limitations can be addressed to some extent
with additional human supervision. In the future, the SEAL framework can also be extended to tackle
few-shot learning of new objects with a few annotated examples. We studied this problem under the
embodied active setting, but the self-supervised label propagation is also applicable to passive video
data. We tackled static scenes in this paper. In the future, the 3D semantic map can potentially be
extended to dynamic scenes with moving humans by explicitly predicting which voxels belong to
static and dynamic objects.
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A Pseudo Code

Algorithm 1 Learning action

1: Initialize Dataset: D = ∅
2: Initialize Pre-trained Peception Model: fP ;θ

3: Initialize Gainful Curiosity Policy: πA;ω
4: E = Number of training environments
5: Initialize 3D Semantic Maps: m0 = 0 ∈ RE×K×L×W×H

6: T = Trajectory length
7: N = Number of training iterations
8: P = Number of RL epochs
9: for iteration p = 1, 2, ...P do

10: for iteration e = 1, 2, ...E do
11: se0 = env.reset() {environment initial state}
12: for iteration t = 1, 2, ...T do
13: at = πA(s

e
t−1)

14: set = env.step(at) {environment step}
15: me

t = UpdateMap(me
t−1, s

e
t , fP ;θ)

16: re = sum(me
t > 0.9)

17: end for
18: end for
19: end for
20: for iteration n = 1, 2, ...N do
21: πA ← ∇E [

∑
r]

22: end for

Algorithm 2 Learning perception

1: Initialize Dataset: D = ∅
2: Initialize Pre-trained Peception Model: fP ;θ

3: Initialize Trained Gainful Curiosity Policy: πA
4: E = Number of training environments
5: T = Trajectory length
6: N = Number of training iterations
7: for iteration e = 1, 2, ...E do
8: Initialize 3D Semantic Map: m0 = 0 ∈ RK×L×W×H

9: se0 = env.reset() {environment initial state}
10: for iteration t = 1, 2, ...T do
11: at = πA(s

e
t−1)

12: set = env.step(at) {environment step}
13: mt = UpdateMap(mt−1, s

e
t , fP ;θ)

14: end for
15: Le = LabelMap(mT ) {Self-supervised labeling}
16: for iteration t = 1, 2, ...T do
17: Iet , D

e
t , x

e
t = set {RGB, Depth, Pose}

18: yet = GetLabels(Le, xet , D
e
t ) {RayTracing}

19: D = D ∪ {(Iet , yet )}
20: end for
21: end for
22: for iteration j = 1, 2, ...N do
23: sample batch (Ik, yk), ..., (Ik+B , yk+B)
24: update θ to minimize L(fP ;θ(Ii), yi) via SGD
25: end for
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Algorithm 3 Update Map

1: Iet , D
e
t , x

e
t = set {RGB, Depth, Pose}

2: Compute agent centric point cloud (APC) from De
t and P camera matrix

3: Transform xet to geocentric pose xetG
4: Transform APC into geocentric point cloud (GPC) using xetG
5: Compute semantic obs Set as fP ;θ(Iet )
6: Compute semantic features fet : AveragePool (Set )
7: Convert GPC into voxel grid and fill with fet : m̂t

8: mt = max(mt−1, m̂t

Algorithm 4 Label Map

1: I = Number of total instances
2: NCP = No category prediction threshold
3: Initialize Le ∈ RI×L×W×H

4: for iteration k = 1, 2, ...K do
5: thresh = mT [k] > NCP
6: thresh = RemoveSmallObjects(thresh)
7: thresh = FillSmallHoles(thresh)
8: thresh = BinaryDilate(thresh)
9: l = MorphologicalLabel(thresh)

10: update Le with l
11: end for

Algorithm 5 Get Labels

1: HV ,WV = height, width of voxel map
2: HI ,WI = height, width of desired ray traced image
3: dmin, dmax = min, max depth to ray trace
4: Initialize yet to all zeros
5: Transform mt into agent centric map ma

t using xet
6: for iteration i = 0, ...,WI do
7: for iteration k = 0, ...,HI do
8: Compute ray direction r = atan(−(i− WI

2 )/(WI

2 )), atan(−(k − WI

2 )/(WI

2 ))
9: march along r and capture semantic map values to form image:

10: for iteration d = dmin, dmin + 1, ..., dmax do
11: p = [HV

2 , WV

2 ] + d ∗ tan(r)
12: if p inside voxel grid, yet [i, j] = mt[p, d]
13: end for
14: end for
15: end for
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B List of Training and Test scenes

Dataset Train split Test split

Gibson

Allensville
Beechwood
Benevolence

Coffeen
Cosmos

Forkland
Hanson
Hiteman
Klickitat
Lakeville

Leonardo
Lindenwood

Marstons
Merom

Mifflinburg

Newfields
Onaga

Pinesdale
Pomaria

Ranchester

Shelbyville
Stockman

Tolstoy
Wainscott
Woodbine

Collierville
Corozal
Darden

Markleeville
Wiconisco

C Compute Requirements

We utilize 8 x 32GB V100 GPU system for training the active exploration policy using Gainful
Curiosity and other Action baselines. We train the policy for 10 million frames, which takes around
2 days to train. The trajectories for the Perception phase are collected using single 32GB V100
GPU. It takes only a few minutes to collect each trajectory. The Mask-RCNN is fine-tuned using 8
x 32GB V100 GPUs. Fine-tuning the Mask-RCNN one takes less than 3 hrs. All the experiments
are conducted on an internal cluster. The compute requirement can be reduced to single 16GB
GPU by reducing the number of threads during policy training and reducing the batch size during
Mask-RCNN training. Reducing compute will increase the training time.
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