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Abstract
This work studies the problem of object goal navigation which involves navigating
to an instance of the given object category in unseen environments. End-to-end
learning-based navigation methods struggle at this task as they are ineffective at
exploration and long-term planning. We propose a modular system called, ‘Goal-
Oriented Semantic Exploration’ which builds an episodic semantic map and uses it
to explore the environment efficiently based on the goal object category. Empirical
results in visually realistic simulation environments show that the proposed model
outperforms a wide range of baselines including end-to-end learning-based methods
as well as modular map-based methods and led to the winning entry of the CVPR-
2020 Habitat ObjectNav Challenge. Ablation analysis indicates that the proposed
model learns semantic priors of the relative arrangement of objects in a scene,
and uses them to explore efficiently. Domain-agnostic module design allow us to
transfer our model to a mobile robot platform and achieve similar performance for
object goal navigation in the real-world.

1 Introduction
Autonomous navigation is a core requirement in building intelligent embodied agents. Consider an
autonomous agent being asked to navigate to a ‘dining table’ in an unseen environment as shown in
Figure 1. In terms of semantic understanding, this task not only involves object detection, i.e. what
does a ‘dining table’ look like, but also scene understanding of where ‘dining tables’ are more likely
to be found. The latter requires a long-term episodic memory as well as learning semantic priors on
the relative arrangement of objects in a scene. Long-term episodic memory allows the agent to keep a
track of explored and unexplored areas. Learning semantic priors allows the agent to also use the
episodic memory to decide which region to explore next in order to find the target object in the least
amount of time.

How do we design a computational model for building an episodic memory and using it effectively
based on semantic priors for efficient navigation in unseen environments? One popular approach is to
use end-to-end reinforcement or imitation learning with recurrent neural networks to build episodic
memory and learn semantic priors implicitly [31, 17, 50, 32]. However, end-to-end learning-based
methods suffer from large sample complexity and poor generalization as they memorize object
locations and appearance in training environments.

Recently, Chaplot et al. [10] introduced a modular learning-based system called ‘Active Neural
SLAM’ which builds explicit obstacle maps to maintain episodic memory. Explicit maps also allow
analytical path planning and thus lead to significantly better exploration and sample complexity.
However, Active Neural SLAM, designed for maximizing exploration coverage, does not encode
semantics in the episodic memory and thus does not learn semantic priors. In this paper, we extend
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Figure 1: Semantic Skills required for Object Goal navigation. Efficient Object Goal navigation not only
requires passive skills such as object detection, but also active skills such as an building an episodic memory and
using it effective to learn semantic priors abour relative arrangements of objects in a scene.

the Active Neural SLAM system to build explicit semantic maps and learn semantic priors using a
semantically-aware long-term policy.

The proposed method, called ‘Goal-Oriented Semantic Exploration’ (SemExp), makes two improve-
ments over [10] to tackle semantic navigation tasks. First, it builds top-down metric maps similar
to [10] but adds extra channels to encode semantic categories explicitly. Instead of predicting the
top-down maps directly from the first-person image as in [10], we use first-person predictions fol-
lowed by differentiable geometric projections. This allows us to leverage existing pretrained object
detection and semantic segmentation models to build semantic maps instead of learning from scratch.
Second, instead of using a coverage maximizing goal-agnostic exploration policy based only on
obstacle maps, we train a goal-oriented semantic exploration policy which learns semantic priors for
efficient navigation. These improvements allow us to tackle a challenging object goal navigation task.
Our experiments in visually realistic simulation environments show that SemExp outperforms prior
methods by a significant margin. The proposed model also won the CVPR 2020 Habitat ObjectNav
Challenge [3]3. We also demonstrate that SemExp achieves similar performance in the real-world
when transferred to a mobile robot platform.

2 Related Work
We briefly discuss related work on semantic mapping and navigation below.

Semantic Mapping. There’s a large body of work on building obstacle maps both in 2D and 3D
using structure from motion and Simultaneous Localization and Mapping (SLAM) [21, 23, 42]. We
defer the interested readers to the survey by Fuentes-Pacheco et al. [14] on SLAM. Some of the
more relevant works incorporate semantics in the map using probabilistic graphical models [4] or
using recent learning-based computer vision models [49, 30]. In contrast to these works, we use
differentiable projection operations to learn semantic mapping with supervision in the map space.
This limits large errors in the map due to small errors in first-person semantic predictions.

Navigation. Classical navigation approaches use explicit geometric maps to compute paths to goal
locations via path planning [24, 27, 5, 41]. The goals are selected base on heuristics such as the
Frontier-based Exploration algorithm [47]. In contrast, we use a learning-based policy to use semantic
priors for selecting exploration goals based on the object goal category.

Recent learning-based approaches use end-to-end reinforcement or imitation learning for training
navigation policies. These include methods which use recurrent neural networks [31, 26, 7, 38, 22, 8,
39, 43], structured spatial representations [17, 34, 9, 20, 16] and topological representations [36, 37].
Recent works tackling object goal navigation include [45, 48, 44, 32]. Wu et al. [45] try to ex-
plore structural similarities between the environment by building a probabilistic graphical model
over the semantic information like room types. Similarly, Yang et al. [48] propose to incorporate
semantic priors into a deep reinforcement learning framework by using Graph Convolutional Net-
works. Wortsman et al. [44] propose a meta-reinforcement learning approach where an agent learns
a self-supervised interaction loss that encourages effective navigation to even keep learning in a
test environment. Mousavian et al. [32] use semantic segmentation and detection masks obtained
by running state-of-the-art computer vision algorithms on the input observation and used a deep
network to learn the navigation policy based on it. In all the above methods, the learnt representations
are implicit and the models need to learn obstacle avoidance, episodic memory, planning as well
as semantic priors implicitly from the goal-driven reward. Explicit map representation has been

3https://aihabitat.org/challenge/2020/
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Figure 2: Goal-Oriented Semantic Exploration Model Overview. The proposed model consists of two
modules, Semantic Mapping and Goal-Oriented Semantic Policy. The Semantic Mapping model builds a
semantic map over time and the Goal-Oriented Semantic Policy selects a long-term goal based on the semantic
map to reach the given object goal efficiently. A deterministic local policy based on analytical planners is used
to take low-level navigation actions to reach the long-term goal.

shown to improve performance as well as sample efficiency over end-to-end learning-based methods
for different navigation tasks [10, 12], however they learn semantics implicitly. In this work, we
use explicit structured semantic map representation, which allows us to learn semantically-aware
exploration policies and tackle the object-goal navigation task. Concurrent work studies the use of
similar semantic maps in learning exploration policies for improving object detection systems [11].

3 Method
Object Goal Task Definition. In the Object Goal task [38, 1], the objective is to navigate to an
instance of the given object category such as ‘chair’ or ‘bed’. The agent is initialized at a random
location in the environment and receives the goal object category (G) as input. At each time step t, the
agent receives visual observations (st) and sensor pose readings xt and take navigational actions at.
The visual observations consist of first-person RGB and depth images. The action space A consists
of four actions: move_forward, turn_left, turn_right, stop. The agent needs to take the
‘stop’ action when it believes it has reached close to the goal object. If the distance to the goal object
is less than some threshold, ds(= 1m), when the agent takes the stop action, the episode is considered
successful. The episode terminates at after a fixed maximum number of timesteps (= 500).

Overview. We propose a modular model called ‘Goal-Oriented Semantic Exploration’ (SemExp) to
tackle the Object Goal navigation task (see Figure 2 for an overview). It consists of two learnable
modules, ‘Semantic Mapping’ and ‘Goal-Oriented Semantic Policy’. The Semantic Mapping module
builds a semantic map over time and the Goal-Oriented Semantic Policy selects a long-term goal
based on the semantic map to reach the given object goal efficiently. A deterministic local policy
based on analytical planners is used to take low-level navigation actions to reach the long-term goal.
We first describe the semantic map representation used by our model and then describe the modules.

Semantic Map Representation. The SemExp model internally maintains a semantic metric map,
mt and pose of the agent xt. The spatial map, mt, is a K ×M ×M matrix where M ×M denotes
the map size and each element in this spatial map corresponds to a cell of size 25cm2 (5cm× 5cm)
in the physical world. K = C + 2 is the number of channels in the semantic map, where C is the
total number of semantic categories. The first two channels represent obstacles and explored area
and the rest of the channels each represent an object category. Each element in a channel represents
whether the corresponding location is an obstacle, explored, or contains an object of the corresponding
category. The map is initialized with all zeros at the beginning of an episode, m0 = [0]K×M×M .
The pose xt ∈ R3 denotes the x and y coordinates of the agent and the orientation of the agent at
time t. The agent always starts at the center of the map facing east at the beginning of the episode,
x0 = (M/2,M/2, 0.0).

Semantic Mapping. In order to a build semantic map, we need to predict semantic categories
and segmentation of the objects seen in visual observations. It is desirable to use existing object
detection and semantic segmentation models instead of learning from scratch. The Active Neural
SLAM model predicts the top-down map directly from RGB observations and thus, does not have
any mechanism for incorporating pretrained object detection or semantic segmentation systems.
Instead, we predict semantic segmentation in the first-person view and use differentiable projection to
transform first-person predictions to top-down maps. This allows us to use existing pretrained models
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Figure 3: Semantic Mapping. The Semantic Mapping module takes in a sequence of RGB (It) and Depth
(Dt) images and produces a top-down Semantic Map.

for first-person semantic segmentation. However small errors in first-person semantic segmentation
can lead to large errors in the map after projection. We overcome this limitation by imposing a loss in
the map space in addition to the first-person space.

Figure 3 shows an overview of the Semantic Mapping module. The depth observation is used to
compute a point cloud. Each point in the point cloud is associated with the predicted semantic
categories. The semantic categories are predicted using a pretrained Mask RCNN [18] on the RGB
observation. Each point in the point cloud is then projected in 3D space using differentiable geometric
computations to get the voxel representation. The voxel representation is then converted to the
semantic map. Summing over the height dimension of the voxel representation for all obstacles,
all cells, and each category gives different channels of the projected semantic map. The projected
semantic map is then passed through a denoising neural network to get the final semantic map
prediction. The map is aggregated over time using spatial transformations and channel-wise pooling
as described in [10]. The Semantic Mapping module is trained using supervised learning with
cross-entropy loss on the semantic segmentation as well as semantic map prediction. The geometric
projection is implemented using differentiable operations such that the loss on the semantic map
prediction can be backpropagated through the entire module if desired.

Goal-Oriented Semantic Policy. The Goal-Oriented Semantic Policy decides a long-term goal
based on the current semantic map to reach the given object goal (G). If the channel corresponding
to category G has a non-zero element, meaning that the object goal is observed, it simply selects
all non-zero elements as the long-term goal. If the object goal is not observed, the Goal-Oriented
Semantic Policy needs to select a long-term goal where a goal category object is most likely to be
found. This requires learning semantic priors on the relative arrangement of objects and areas. We
use a neural network to learn these semantic priors. It takes the semantic map, the agent’s current and
past locations, and the object goal as input and predicts a long-term goal in the top-down map space.

The Goal-Oriented Semantic Policy is trained using reinforcement learning with distance reduced
to the nearest goal object as the reward. We sample the long-term goal at a coarse time-scale, once
every u = 25 steps, similar to the goal-agnostic Global Policy in [10]. This reduces the time-horizon
for exploration in RL exponentially and consequently, reduces the sample complexity.

Deterministic Local Policy. The local policy uses Fast Marching Method [41] to plan a path to
the long-term goal from the current location based on the obstacle channel of the semantic map. It
simply takes deterministic actions along the path to reach the long-term goal. We use a deterministic
local policy as compared to a trained local policy in [10] as they led to a similar performance in our
experiments. Note that although the above Semantic Policy acts at a coarse time scale, the Local
Policy acts at a fine time scale. At each time step, we update the map and replan the path to the
long-term goal.

4 Experimental Setup
We use the Gibson [46] and Matterport3D (MP3D) [6] datasets in the Habitat simulator [39] for our
experiments. Both Gibson and MP3D consist of scenes which are 3D reconstructions of real-world
environments. For the Gibson dataset,wWe use the train and val splits of Gibson tiny set for training
and testing respectively as the test set is held-out for the online evaluation server. We do not use
the validation set for hyper-parameter tuning. The semantic annotations for the Gibson tiny set are
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Figure 4: Example Trajectory. Figure showing an example trajectory of the SemExp model in
a scene from the Gibson test set. Sample images seen by the agent are shown on the top and the
predicted semantic map is shown below. The goal object is ‘bed’. The long-term goal selected by the
Goal-driven Semantic Policy is shown in blue. The ground-truth map (not visible to the agent) with
the agent trajectory is shown on the right for reference.

available from Armeni et al. [2]. For the MP3D dataset, we use the standard train and test splits. Our
training and test set consists of a total of 86 scenes (25 Gibson tiny and 61 MP3D) and 16 scenes (5
Gibson tiny and 11 MP3D), respectively.

The observation space consists of RGBD images of size 4 × 640 × 480 , base odometry sensor
readings of size 3 × 1 denoting the change in agent’s x-y coordinates and orientation, and goal
object category represented as an integer. The actions space consists of four actions: move_forward,
turn_left, turn_right, stop. The success threshold ds is set to 1m. The maximum episode
length is 500 steps. We note that the depth and pose are perfect in simulation, but these challenges
are orthogonal to the focus of this paper and prior works have shown that both can be estimated
effectively from RGB images and noisy sensor pose readings [15, 10]. These design choices are
identical to the CVPR 2020 Object Goal Navigation Challenge.

For the object goal, we use object categories which are common between Gibson, MP3D, and
MS-COCO [28] datasets. This leads to set of 6 object goal categories: ‘chair’, ‘couch’, ‘potted
plant’, ‘bed’, ‘toilet’ and ‘tv’. We use a Mask-RCNN [18] using Feature Pyramid Networks [29] with
ResNet50 [19] backbone pretrained on MS-COCO for object detection and instance segmentation.
Although we use 6 categories for object goals, we build a semantic map with 15 categories (shown
on the right in Figure 4) to encode more information for learning semantic priors.

Architecture and Hyperparameter details. We use PyTorch [35] for implementing and training
our model. The denoising network in the Semantic Mapping module is a 5-layer fully convolutional
network. We freeze the Mask RCNN weights in the Semantic Mapping module (except for results
on Habitat Challenge in Section 5.2) as Matterport does not contain labels for all 15 categories in
our semantic map. We train the denoising network with the map-based loss on all 15 categories for
Gibson frames and only 6 categories on MP3D frames. The Goal-driven Semantic Policy is a 5 layer
convolutional network followed by 3 fully connected layers. In addition to the semantic map, we also
pass the agent orientation and goal object category index as separate inputs to this Policy. They are
processed by separate Embedding layers and added as an input to the fully-connected layers.

We train both the modules with 86 parallel threads, with each thread using one scene in the training
set. We maintain a FIFO memory of size 500000 for training the Semantic Mapping module. After
one step in each thread, we perform 10 updates to the Semantic Mapping module with a batch size
of 64. We use Adam optimizer with a learning rate of 0.0001. We use binary cross-entropy loss for
semantic map prediction. The Goal-driven Policy samples a new goal every u = 25 timesteps. For
training this policy, we use Proximal Policy Optimization (PPO) [40] with a time horizon of 20 steps,
36 mini-batches, and 4 epochs in each PPO update. Our PPO implementation is based on [25]. The
reward for the policy is the decrease in distance to the nearest goal object. We use Adam optimizer
with a learning rate of 0.000025, a discount factor of γ = 0.99, an entropy coefficient of 0.001, value
loss coefficient of 0.5 for training the Goal-driven Policy.

Metrics. We use 3 metrics for comparing all the methods: Success. Ratio of episodes where the
method was successful. SPL. Success weighted by Path Length as proposed by [1]. This metric
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Table 1: Results. Performance of SemExp as compared to the baselines on the Gibson and MP3D datasets.

Gibson MP3D
Method SPL Success DTS (m) SPL Success DTS (m)

Random 0.004 0.004 3.893 0.005 0.005 8.048
RGBD + RL [39] 0.027 0.082 3.310 0.017 0.037 7.654
RGBD + Semantics + RL [32] 0.049 0.159 3.203 0.015 0.031 7.612
Classical Map + FBE [47] 0.124 0.403 2.432 0.117 0.311 7.102
Active Neural SLAM [10] 0.145 0.446 2.275 0.119 0.321 7.056
SemExp 0.199 0.544 1.723 0.144 0.360 6.733

measures the efficiency of reaching the goal in addition to the success rate. DTS: Distance to Success.
This is the distance of the agent from the success threshold boundary when the episode ends. This
computed as follows:

DTS = max(||xT −G||2 − ds, 0)
where ||xT −G||2 is the L2 distance of the agent from the goal location at the end of the episode, ds
is the success threshold.

4.1 Baselines.
We use two end-to-end Reinforcement Learning (RL) methods as baselines:
RGBD + RL: A vanilla recurrent RL Policy initialized with ResNet18 [19] backbone followed by a
GRU adapted from Savva et al. [39]. Agent pose and goal object category are passed through an
embedding layer and append to the recurrent layer input.
RGBD + Semantics + RL [32]: This baseline is adapted from Mousavian et al. [32] who pass
semantic segmentation and object detection predictions along with RGBD input to a recurrent RL
policy. We use a pretrained Mask RCNN identical to the one used in the proposed model for semantic
segmentation and object detection in this baseline. RGBD observations are encoded with a ResNet18
backbone visual encoder, and agent pose and goal object are encoded usinng embedding layers as
described above.
Both the RL based baselines are trained with Proximal Policy Optimization [40] using a dense reward
of distance reduced to the nearest goal object. We design two more baselines based on goal-agnostic
exploration methods combined with heuristic-based local goal-driven policy.
Classical Mapping + FBE [47]: This baseline use classical robotics pipeline for mapping followed
by classical frontier-based exploration (FBE) [47] algorithm. We use a heuristic-based local policy
using a pretrained Mask-RCNN. Whenever the Mask RCNN detects the goal object category, the
local policy tries to go towards the object using an analytical planner.
Active Neural SLAM [10]: In this baseline, we use an exploration policy trained to maximize
coverage from [10], followed by the heuristic-based local policy as described above.

5 Results
We train all the baselines and the proposed model for 10 million frames and evaluate them on the
Gibson and MP3D scenes in our test set separately. We run 200 evaluations episode per scene, leading
to a total of 1000 episodes in Gibson (5 scenes) and 2000 episodes in MP3D (10 scenes, 1 scene
did not contain any object of the 6 possible categories). Figure 4 visualizes an exmaple trajectory
using the proposed SemExp showing the agent observations and predicted semantic map4. The
quantitative results are shown in Table 1. SemExp outperforms all the baselines by a considerable
margin consistently across both the datasets (achieving a success rate 54.4%/36.0% on Gibson/MP3D
vs 44.6%/32.1% for the Active Neural SLAM baseline) . The absolute numbers are higher on the
Gibson set, as the scenes are comparatively smaller. The Distance to Success (DTS) threshold for
Random in Table 1 indicates the difficulty of the dataset. Interestingly, the baseline combining
classical exploration with pretrained object detectors outperforms the end-to-end RL baselines. We
observed that the training performance of the RL-based baselines was much higher indicating that
they memorize the object locations and appearance in the training scenes and generalize poorly. The
increase in performance of SemExp over the Active Neural SLAM baseline shows the importance of
incorporating semantics and the goal object in exploration.

4See demo videos at https://devendrachaplot.github.io/projects/semantic-exploration
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Table 2: Ablations and Error Analysis. Table showing comparison of the proposed model, SemExp, with 2
ablations and with Ground Truth semantic segmentation on the Gibson dataset.

Method SPL Success DTS (m)

SemExp w.o. Semantic Map 0.165 0.488 2.084
SemExp w.o. Goal Policy 0.148 0.450 2.315
SemExp 0.199 0.544 1.723
SemExp w. GT SemSeg 0.457 0.731 1.089

Figure 5: Figure showing an example comparing the proposed model with (top) and without (bottom)
Goal-Oriented Semantic Policy. Starting at the same location with the same goal object of ‘toilet’,
the proposed model with Goal-Oriented Policy can find the target object much faster than without
Goal-Oriented Exploration.

5.1 Ablations and Error Analysis
To understand the importance of both the modules in SemExp, we consider two ablations:
SemExp w.o. Semantic Map. We replace the Semantic Map with the Obstacle-only Map. As
opposed to the Active Neural SLAM baseline, the Goal-oriented Policy is still trained with distance
reduced to the nearest object as the reward.
SemExp w.o. Goal Policy. We replace the Goal-driven policy with a goal-agnostic policy trained to
maximize exploration coverage as in [10], but still trained with the semantic map as input.
The results in the top part of Table 2 show the performance of these ablations. The performance
of SemExp without the Goal-oriented policy is comparable to the Active Neural SLAM baseline,
indicating that the Goal-oriented policy learns semantic priors for better exploration leading to
more efficient navigation. Figure 5 shows an qualitative example indicating the importance of the
Goal-oriented Policy. The performance of SemExp without the Semantic Map also drops, but it is
higher than the ablation without Goal Policy. This indicates that it is possible to learn some semantic
priors with just the obstacle map without semantic channels.

7



Table 3: Results on CVPR 2020 Habitat ObjectNav Challenge. Table showing the performance of top 5
entries on the Test-Challenge dataset. Our submission based on the SemExp model won the challenge.

Team Name SPL Success Dist To Goal (m)

SemExp 0.102 0.253 6.328
SRCB-robot-sudoer 0.099 0.188 6.908
Active Exploration (Pre-explore) 0.046 0.126 7.336
Black Sheep 0.028 0.101 7.033
Blue Ox 0.021 0.069 7.233

Figure 6: Real-world Transfer. Figure showing an example trajectory of the SemExp model transferred to
the real-world for the object goal ‘potted plant’. Sample images seen by the robot are shown on the top and the
predicted semantic map is shown below. The long-term goal selected by the Goal-driven Policy is shown in blue.

The performance of the proposed model is still far from perfect. We would like to understand the error
modes for future improvements. We observed two main sources of errors, semantic segmentation
inaccuracies and inability to find the goal object. In order to quantify the effect of both the error
modes, we evaluate the proposed model with ground truth semantic segmentation (see SemExp w.
GT SemSeg in Table 2) using the ‘Semantic’ sensor in Habitat simulator. This leads to a success rate
of 73.1% vs 54.4%, which means around 19% performance can be improved with better semantic
segmentation. The rest of the 27% episodes are mostly cases where the goal object is not found,
which can be improved with better semantic exploration.

5.2 Result on Habitat Challenge
SemExp also won the CVPR 2020 Habitat ObjectNav Challenge. The challenge task setup is identical
to ours except the goal object categories. The challenge uses 21 object categories for the goal object.
As these object categories are not overlapping with the COCO categories, we use DeepLabv3 [13]
model for semantic segmentation. We predict the semantic segmentation and the semantic map with
all 40 categories in the MP3D dataset including the 21 goal categories. We fine-tune the DeepLabv3
segmentation model by retraining the final layer to predict semantic segmentation for all 40 categories.
This segmentation model is also trained with the map-based loss in addition to the first-person
segmentation loss. The performance of the top 5 entries to the challenge are shown in Table 3. The
proposed approach outperforms all the other entries with a success rate of 25.3% as compared to
18.8% for the second place entry.

5.3 Real World Transfer
We used the Locobot hardware platform and PyRobot API [33] to deploy the trained policy in the real
world. In Figure 6 we show an episode of the robot when it was provided ‘potted plant’ as the object
goal. The long-term goals sampled by the Goal-driven policy (shown by blue circles on the map) are
often towards spaces where there are high chances of finding a potted plant. This indicates that it is
learning to exploit the structure in the semantic map. Out of 20 trials in the real-world, our method
succeeded in 13 episodes leading to a success rate of 65%. End-to-end learning-based policies failed
consistently in the real-world due to the visual domain gap between simulation environments and the
real-world. Our model performs well in the real-world as (1) it is able to leverage Mask RCNN which
is trained on real-world data and (2) the other learned modules (map denoising and the goal policy)
work on top-down maps which are domain-agnostic. Our trials in the real-world also indicate that
perfect pose and depth are not critical to the success of our model as it can be successfully transferred
to the real-world where pose and depth are noisy.
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6 Conclusion
In this paper, we presented a semantically-aware exploration model to tackle the object goal navigation
task in large realistic environments. The proposed model makes two major improvements over prior
methods, incorporating semantics in explicit episodic memory and learning goal-oriented semantic
exploration policies. Our method achieves state-of-the-art performance on the object goal navigation
task and won the CVPR2020 Habitat ObjectNav challenge. Ablation studies show that the proposed
model learns semantic priors which lead to more efficient goal-driven navigation. Domain-agnostic
module design led to successful transfer of our model to the real-world. We also analyze the error
modes for our model and quantify the scope for improvement along two important dimensions
(semantic mapping and goal-oriented exploration) in the future work. The proposed model can also
be extended to tackle a sequence of object goals by utilizing the episodic map for more efficient
navigation for subsequent goals.
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