Carnegie Mellon University

Active Neural Localization

Devendra Singh Chaplot with Emilio Parisotto, Ruslan Salakhutdinov

Localization

Estimating the location of an autonomous agent given:

Localization

Carnegie Mellon

University

Estimating the location of an autonomous agent given:

• a map of the environment

Active Neural Localization (Chaplot, Parisotto, Salakhutdinov)

Estimating the location of an autonomous agent given:

• a map of the environment

Carnegie Mellon

University

Localization

Motivation

Carnegie Mellon

University

- Localization is considered as the **basic precondition for truly autonomous agents** by Burgard et al. (1998)
- Downstream tasks: exploration, target-navigation, planning
- Applications: autonomous vehicles, factory robots, housekeeping robots, delivery drones

Passive Localization

Active Localization

Active Localization

Related Work

- Local Localization:
 - Kalman Filters (Smith et al., 1990)
 - Geometry-based visual odometry methods (Nister et al., 2006)
 - DeepVO (Wang et al., 2017), VINet (Clark et al., 2017)
- Global Localization:
 - Markov Localization (Fox, 1998)
 - Multi-hypothesis Kalman filters (Cox & Leonard, 1994; Roumeliotis & Bekey, 2000)
 - Monte Carlo Localization (Thrun et al., 2001)
 - Active Markov Localization (Fox et al., 1998)
- Learning policy:
 - Navigation: (Mirowski et al. 2017)
 - Planning: Value Iteration Networks (Tamar et al., 2016)
 - Planning under uncertainty: QMDP-Net (Karkus et al., 2017)
 - Mapping and Planning: Cognitive Mapper and Planner (Gupta et al., 2017)
- End-to-end Localization on known maps:
 - PoseNet (Kendall et al., 2015), VidLoc (Clark et al., 2017)

Carnegie Mellon

University

Problem Formulation

Carnegie Mellon

University

 s_t : Agent observation at time t

M: Information about the map

 a_t : Action taken by the agent at time t

Problem Formulation

Carnegie Mellon

University

 s_t : Agent observation at time t

- a_t : Action taken by the agent at time t
- y_t : Position of the agent at time t
- M: Information about the map

$$P(y_t | s_{1:t}, a_{1:t-1}, M)$$
 : Belief

$$\pi(a_t | s_{1:t}, a_{1:t-1}, M)$$
 : Policy

 s_t : Agent observation at time t a_t : Action taken by the agent at time t y_t : Position of the agent at time tM: Information about the map

(Fox et al., 2003) Carnegie

Viellon

University

Bayesian Filtering

 s_t : Agent observation at time t a_t : Action taken by the agent at time t y_t : Position of the agent at time tM: Information about the map

Belief: Probability distribution over y_t conditioned over past observations $s_{1:t}$ and actions $a_{1:t-1}$:

 $Bel(y_t) = P(y_t|s_{1:t}, a_{1:t-1}, M)$

Likelihood: Probability of observing s_t given that the location of the agent is y_t :

 $Lik(s_t) = P(s_t|y_t)$

 s_t : Agent observation at time t a_t : Action taken by the agent at time t y_t : Position of the agent at time tM: Information about the map

Belief: Probability distribution over y_t conditioned over past observations $s_{1:t}$ and actions $a_{1:t-1}$:

 $Bel(y_t) = P(y_t|s_{1:t}, a_{1:t-1}, M)$

Likelihood: Probability of observing s_t given that the location of the agent is y_t : $Lik(s_t) = P(s_t|y_t)$ Under the Markov assumption:

$$\overline{Bel}(y_t) = \sum_{y_{t-1}} P(y_t | y_{t-1}, a_{t-1}) Bel(y_{t-1})$$
Belief before observing s_t Transition Belief after observing s_{t-1}

$$Bel(y_t) = \frac{1}{Z} Lik(s_t) \overline{Bel}(y_t)$$
Belief after observing s_t Prob. of Belief before observing s_t

Transition function: Probability of landing in a state y_t from y_{t-1} , based on the action, a_{t-1} : $f_T = P(y_t | y_{t-1}, a_{t-1})$

(Fox et al., 2003) Carnegie

Vellon

University

 s_t : Agent observation at time t a_t : Action taken by the agent at time t y_t : Position of the agent at time tM: Information about the map

Belief: Probability distribution over y_t conditioned over past observations $s_{1:t}$ and actions $a_{1:t-1}$:

 $Bel(y_t) = P(y_t|s_{1:t}, a_{1:t-1}, M)$

Likelihood: Probability of observing s_t given that the location of the agent is y_t :

 $Lik(s_t) = P(s_t|y_t)$

Under the Markov assumption:

$$\overline{Beli}(y_t) = \sum_{y_{t-1}} P(y_t | y_{t-1}, a_{t-1}) Bel(y_{t-1})$$
Belief before
observing s_t

$$\frac{Bel(y_t)}{Belief after} = \frac{1}{Z} Lik(s_t) \overline{Bel}(y_t)$$
Belief after
observing s_t

$$\frac{Bel(y_t)}{Belief after} = \frac{1}{Z} Del(y_t)$$
Belief before
observing s_t

$$\frac{Belief before}{Belief}$$

$$\frac{Belief}{Belief}$$

$$\frac{Belief}{Belief}$$

(Fox et al., 2003) Carnegie Mellon University

 s_t : Agent observation at time t a_t : Action taken by the agent at time t y_t : Position of the agent at time tM: Information about the map

Belief: Probability distribution over y_t conditioned over past observations $s_{1:t}$ and actions $a_{1:t-1}$:

 $Bel(y_t) = P(y_t|s_{1:t}, a_{1:t-1}, M)$

Likelihood: Probability of observing s_t given that the location of the agent is y_t :

 $Lik(s_t) = P(s_t|y_t)$

Under the Markov assumption:

$$\overline{Bel}(y_t) = \sum_{y_{t-1}} P(y_t | y_{t-1}, a_{t-1}) Bel(y_{t-1})$$
Belief before observing s_t Transition Belief after observing s_{t-1}

$$Bel(y_t) = \frac{1}{Z} Lik(s_t) \overline{Bel}(y_t)$$
Belief after observing s_t Observing s_t Drob. of Belief before observing s_t

(Fox et al., 2003) Carnegie Mellon

 $P(y_t|s_{1:t}, a_{1:t-1}, M)$

University

University

Representation of Belief and Likelihood

X

University

Representation of Belief and Likelihood

3-dimensional tensor representing *x*-coordinate, *y*-coordinate and orientation

University

Representation of Belief and Likelihood

3-dimensional tensor representing *x*-coordinate, *y*-coordinate and orientation

Each element represents the probability of the agent being present in the corresponding location

→ Map size

Number of orientations

х

 $\times M \times N$

Simulation Environments

Belief before observing $s_t (\overline{Bel}(y_t))$

$\overline{Bel}(y_1)$											
	East	North	West	South							

Eas

Carnegie **Mello**

Active

South North

East

North

West

South

Belief before observing $s_t (\overline{Bel}(y_t))$

East

North

West

South

South

Active

East

North

West

Agent's observation (s_t)

Belief before observing $s_t (\overline{Bel}(y_t))$

Agent's observation (s_t)

Belief before observing $s_t (\overline{Bel}(y_t))$

Agent's observation (s_t)

Belief before observing s_t (*Bel*(y_t))

Belief after observing s_t (Bel(y_t))

Agent's observation (s_t)

Belief before observing s_t ($\overline{Bel}(y_t)$)

Belief after observing s_t (Bel(y_t))

South

East

Active

North West South

South

East

North West

Agent's observation (s_t)

Belief before observing s_t ($\overline{Bel}(y_t)$)

East

Belief after observing s_t ($Bel(y_t)$)

Map Design & agent's true location

Active

East

North

West South

Belief before observing s_t (*Bel*(y_t))

East

Map Design & Agent's agent's true perspective location

Carnegie Mello

Agent's observation (s_t)

North

Active

South North West

East

East North South

West

Agent's

.

Map Design &

Agent's observation (s_t)

Belief before observing s_t (*Bel*(y_t))

Carnegie Mello

Active

South North West

East

East

North

West

South

Belief after observing s_t (*Bel*(y_t))

Optimization

- At the end of the episode, the location prediction is the element with the maximum probability in the belief tensor.
- The agent receives a positive reward (+1) for correct prediction.
- The entire model is trained end-to-end with reinforcement learning, specifically Asynchronous Advantage Actor-Critic (A3C).

 $Bel(y_4)$

 $Bel(y_4)$

 $Bel(y_6)$

University

Experiments Train Test **Unseen Mazes Unseen Mazes** Unseen Textures Dynamic Lighting Domain Adaptation

Demo video: Doom

Carnegie Mellon

University

https://www.youtube.com/watch?v=rdhKu8GqVLw

Demo video: Unreal

Carnegie Mellon

University

https://www.youtube.com/watch?v=T5Ezx-_QfU0

Active Neural Localization (Chaplot, Parisotto, Salakhutdinov)

Results

Markov Localization (Resnet)Active Markov Localization (Slow)

Active Markov Localization (Fast)
 Active Neural Localization

Carnegie Mellon

University

Active Neural Localization (Chaplot, Parisotto, Salakhutdinov)

Results

(S)

Runtime

Markov Localization (Resnet)

Active Markov Localization (Slow)

47962

2756

2513 11878

Maze3D to

Unreal3D

Domain

adaptation

Carnegie Mellon

University

Active Markov Localization (Fast) Active Neural Localization

with lights

Contributions

Carnegie Mellon

University

- Fully-differentiable model for active localization
 - Incorporates ideas of traditional filtering-based localization methods by using a structured belief
 - Capable to deciding actions for accurate and efficient localization
 - Entire model trained end-to-end using reinforcement learning
 - Allows perceptual model and policy model to be trained jointly
 - Doesn't require labels, needs only a reward at the end of the episode
- Generalization to not only unseen maps in the same domain but also across domains.

Devendra Singh Chaplot, Emilio Parisotto, Ruslan Salakhutdinov

Questions?

Appendix

Results (2D)

Carnegie Mellon

University

Env		Maze2D						
Map Size		7x7		15:	15x15		21x21	
Episode Length		15	30	20	40	30	60	
Markov	Time	12	15	29	31	49	51	31.2
Localization	Acc	0.334	0.529	0.351	0.606	0.414	0.661	0.483
Active Markov	Time	29	53	72	165	159	303	130.2
Localization (Fast)	Acc	0.436	0.619	0.468	0.657	0.512	0.735	0.571
Active Markov	Time	1698	3066	3791	8649	8409	13554	6527.8
Localization (Slow)	Acc	0.854	0.938	0.846	0.984	0.845	0.958	0.904
Active Neural	Time	22	34	44	66	82	124	62.0
Localization	Acc	0.936	0.939	0.905	0.939	0.899	0.984	0.934

Perceptual Model

Carnegie Mellon

University

Policy Model

Carnegie Mellon

University

