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Estimating the location of an autonomous agent given:

* a map of the environment * Agent observations
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Motivation AL

* Localization is considered as the basic precondition for truly
autonomous agents by Burgard et al. (1998)

* Downstream tasks: exploration, target-navigation, planning

* Applications: autonomous vehicles, factory robots,
housekeeping robots, delivery drones
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Related Work JLL

Local Localization:
* Kalman Filters (Smith et al., 1990)
* Geometry-based visual odometry methods (Nister et al., 2006)
* DeepVO (Wang et al., 2017), VINet (Clark et al., 2017)

Global Localization:
* Markov Localization (Fox, 1998)
* Multi-hypothesis Kalman filters (Cox & Leonard, 1994; Roumeliotis & Bekey, 2000)
* Monte Carlo Localization (Thrun et al., 2001)
* Active Markov Localization (Fox et al., 1998)

* Learning policy:
* Navigation: (Mirowski et al. 2017)
* Planning: Value Iteration Networks (Tamar et al., 2016)
* Planning under uncertainty: QMDP-Net (Karkus et al., 2017)
* Mapping and Planning: Cognitive Mapper and Planner (Gupta et al.,2017)

End-to-end Localization on known maps:

* PoseNet (Kendall et al., 2015), VidLoc (Clark et al., 2017) .
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Problem Formulation B

s¢: Agent observation at time ¢ M: Information about the map

i ST Lo

a,: Action taken by the agent at time t  Y;: Position of the agent at time t
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Problem Formulation Vit
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S¢: Agent observation at time ¢t
a;: Action taken by the agent at time t
y;: Position of the agent at time ¢

M: Information about the map

P(ytlsl:t' al:t—l'M) : Bellef

n(at|51;t; al:t—l»M) : PO“CV
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Bayesian Filtering ML
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s¢: Agent observation at time t

a;: Action taken by the agent at time t
v¢: Position of the agent at time ¢t

M: Information about the map
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Bayesian Filtering ML
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s¢: Agent observation at time t

a;: Action taken by the agent at time t
v¢: Position of the agent at time t

M: Information about the map

. e g

Belief: Probability distribution over y;
conditioned over past observations s;.;
and actions a;.;_1:

Bel(y:) = P(yelsi.e,a1.4-1, M)

\_ /
TR ] - : ™
Likelihood: Probability of observing s;
given that the location of the agent is y;:
Lik(s;) = P(s
9 (s¢) (selye) )
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Bayesian Filtering ML

s¢: Agent observation at time t Under the Markov assumption:

a;: Action taken by the agent at time t L

y,: Position of the agent at time t Bel(y,) = Z P(ye|ye-1,ae-1) Bel(ye—1)
M: Information about the map Belief before ~ Yt—1 Transition Belief after

observing s; function observing s;_4

( Belief: Probability distribution over y;

1 _
conditioned over past observations s;.; Bel(y;) = = Lik(s;) Bel(y;)
and actions a;.;_1: Z

Belief after Prob. of  Belief before
Bel (yt) —p (yt |51-t o1 M) observing s, observing s, observing s,
\_ : : J/
(" Likelihood: Probability of observing s; A Transition function: Probability of landingin a
given that the location of the agent is y;: state y; from y,_; based on the action, a;_;:

9 Lik(s¢) = P(s¢lye)

) fr= P(}’tl)’t—1,at—1)
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Bayesian Filtering

s¢: Agent observation at time t

a;: Action taken by the agent at time t
v¢: Position of the agent at time t

M: Information about the map

. e g

Belief: Probability distribution over y;
conditioned over past observations s;.;
and actions a;.;_1:

Bel = P(Ye|S1.p)Q1.6—-1, M
9 ve) Vels1.e Ay.6-1, M) y

(" Likelihood: Probability of observing s;
given that the location of the agent is y;:

9 Lik(s¢) = P(s¢lye)

%
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Under the Markov assumption:

Bel(y,) = Z P(ye|ye-1,ae-1) Bel(ye—1)

Belief before Ye-1
observing s;

Transition
function

Belief after
observing s;_4

Bel(y) = - Lik(s,) Bel(y,)

Belief after Prob. of  Belief before
observing s; observing s, observing s;

Posterior
Belief

Prior
Belief
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Bayesian Filtering ML

s¢: Agent observation at time t Under the Markov assumption:

a;: Action taken by the agent at time t L

y,: Position of the agent at time t Bel(y,) = Z P(ye|ye-1,ae-1) Bel(ye—1)
M: Information about the map Belief before ~ Yt—1 Transition Belicf after

observing s; function observing s;_4

( Belief: Probability distribution over y;

1 _
conditioned over past observations s;.; Bel(y;) = = Lik(s;) Bel(y;)
and actions a;.;_1: Z

Belief after Prob. of  Belief before
Bel (yt) —p (yt|51-t Qo1 M) observing s, observing s, observing s,
\_ : : /
T ] - : ™
Likelihood: Probability of observing s;
given that the location of the agent is y;:
Lik(s;) = P(s
9 (s¢) (selye) )
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» Map size

» Number of orientations
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3-dimensional tensor representing
x-coordinate, y-coordinate and orientation
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Map size
» Number of orientations
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3-dimensional tensor representing
x-coordinate, y-coordinate and orientation

Each element represents the probability of the agent
being present in the corresponding location

%

Map size

Number of orientations

v
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Simulation Environments m
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Top View Agent’s Likelihood Map
Observation North West

Maze3D

Unreal3D
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Active Neural Localization e

Belief before observing s; (Bel(y,))

B_el(Jﬁ)
East North West South
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Active Neural Localization e

Agent’s observation (s; ) Belief before observing s; (Bel(y,))

S1 Bel(yy)
East North West South
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Perceptual Model le(sl)
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Active Neural Localization e
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Active Neural Localization e

Agent's observation (s; ) Belief before observing s; (Bel(y;)) Belief after observing s; (Bel(y;))
51 Bel(yy) Bel(y,)

East North West South North West South
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Active Neural Localization e
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Active Neural Localization M—

Agent’s observation (s; ) Belief before observing s; (Bel(y,)) Belief after observing s; (Bel(y,)) Map Design &
agent’s true
51 Bel(y;) Bel(y,) location
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Active Neural Localization M—
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Active Neural Localization M—
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Active Neural Localization M—

Agent’s observation (s; ) Belief before observing s; (Bel(y,)) Belief after observing s; (Bel(y,)) Mop Designd  Agent’s
agent’s true perspective
51 Bel(y;) Bel(y,) location
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Active Neural Localization M—

Agent’s observation (s; ) Belief before observing s; (Bel(y,)) Belief after observing s; (Bel(y)) Mop Design&  Agent’s
agent’s true perspective
S1 Bel(y;) Bel(y;) location

East North West South East North West South

MR - ST

, , |
Perceptual Model le($1) Ji —— Turn IeR Policy Model

Bel(y,)

t=1

- |
Belief before Yt-1 Transition Belief after
observing s; function observing s;_
Carnegie

Mellon
University

Active Neural Localization (Chaplot, Parisotto, Salakhutdinov)




Active Neural Localization M—

Agent’s observation (s; ) Belief before observing s; (Bel(y)) Belief after observing s; (Bel(y,)) Mop Designd  Agent’s
agent’s true perspective
S1 Bel(y;) Bel(y;) location
East North West South North West South

IIII&@* P

, , . [
Perceptual Model le($1) fr
S2 Bel(y,) Bel(yz)
West North West South N ]
 — '_ - = — . =
o X o sl
Frwtk e bl o™ ’: I__u

a, = "Turn left’ :
Policy Model

Carnegie
Mellon
University

Active Neural Localization (Chaplot, Parisotto, Salakhutdinov)




Active Neural Localization ML

MACHINE LEARNING
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Active Neural Localization

|

S3 m(}’s) Bel(ys)
East North West South East North West South | ]
=8 - - | o — - s — I i I
; R e TR o e T T g
‘
= L e ] s Ecbl-r SlE-SIEF ’: 1
l a; = 'Forward’ : l_
|
S B_el(y4) Bel(ys)
East North West South East North West South N ]
v e - o S T Y -
-
- ’:I__L’:I_ lFT—LFI_—LEI_—L ’:I_—I_‘

='F d’
Lik(s4) J fr Lo Policy Model

Perceptual Model

Carnegie
Mellon
University

Active Neural Localization (Chaplot, Parisotto, Salakhutdinov)




Optimization S

At the end of the episode, the location prediction is the
element with the maximum probability in the belief tensor.

* The agent receives a positive reward (+1) for correct prediction.

* The entire model is trained end-to-end with reinforcement
learning, specifically Asynchronous Advantage Actor-Critic
(A3C).
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Experiments oo

Unseen Mazes

Unseen Mazes
Unseen Textures
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Demo video: Doom s
https://www.youtube.com/watch?v=rdhKu8GqVLw

v

Carnegie
Mellon

Active Neural Localization (Chaplot, Parisotto, Salakhutdinov) UIllVeI'Slty




Demo video: Unreal s
https://www.youtube.com/watch?v=T5Ezx- QfUO

t=1
Belief Ground Truth
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Results AL

Markov Localization (Resnet) B Active Markov Localization (Fast)
B Active Markov Localization (Slow) B Active Neural Localization
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Results AL
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Contributions D

* Fully-differentiable model for active localization

* Incorporates ideas of traditional filtering-based localization methods by
using a structured belief

» Capable to deciding actions for accurate and efficient localization

* Entire model trained end-to-end using reinforcement learning
* Allows perceptual model and policy model to be trained jointly
* Doesn’t require labels, needs only a reward at the end of the episode

* Generalization to not only unseen maps in the same domain but
also across domains.
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Active Neural Localization

Devendra Singh Chaplot, Emilio Parisotto, Ruslan Salakhutdinov

Questions?
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Appendix
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Results (2D) M

Env Maze2D All
Map Size X7 15x15 21x21
Episode Length 15 30 20 40 30 60
Markov Time 12 15 29 31 49 51 31.2
Localization Acc 0.334  0.529 0.351 0.606 0414  0.661 0.483
Active Markov Time 29 53 72 165 159 303 130.2
Localization (Fast) Acc 0.436 0.619 0.468 0.657 0.512  0.735 0.571
Active Markov Time 1698 3066 3791 8649 8409 13554 6527.8
Localization (Slow) Acc 0.854 0.938 0.846 0.984 0.845 0.958 0.904
Active Neural Time 22 34 44 66 82 124 62.0
Localization Acc 0936 0.939 0.905 0.939 0.899 0.984 0.934
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Perceptual Model m

Fully-Connected

Convl | ——» Conv2  Flatten | 512
32 filters 64 filters -
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Policy Model m

Actor Layer
Fully-Connected ] (FC)
Convl |—>» Conv2 MP Policy
16 filters 16 filters ]

7x7 3x3 -

BeliefOx M x N stride 3 stride 1 . Value
Action History L Critic é)i.)a;y or
(5 actions) (FC)
Timestep
Embedding
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