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Observations Neural Network Actions

 Reward+

 Reward−

End-to-end Reinforcement or Imitation Learning

Modular Metric Maps

End-to-end Learning
• High sample complexity
• Ineffective in large environments

Modular Metric Maps 
• Can not learn semantic priors
• Pose error accumulation
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Selected Ghost Node

Agent’s Current Node
Regular Nodes
Ghost Nodes

Relative  
Position

• Nodes: areas

• Regular nodes: Explored areas

• Ghost nodes: Unexplored areas

• Edges: Spatial relationship 
between nodes
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 = Geometric Prediction: Free directions

 = Semantic Prediction: Closeness to target

 = Localization

 = Relative Pose Prediction

ℱG(I1)
ℱS(I1, I2)
ℱL(I1, I2)
ℱR(I1, I2)
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 = Semantic Prediction: Closeness to targetℱS(I1, I2)
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 = LocalizationℱL(I1, I2)

Localization(ℱL)

Localization(ℱL)
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 = Relative PoseℱR(I1, I2)

Relative Pose 
Prediction(ℱR)
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ℱR
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0 0 0 1 0 0 0 0 0 0 0 0

Direction label

ℱRScore predictions

Angle

Distance
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Single supervised learning model

• No reinforcement learning, no interaction needed

• Can be trained completely with static data
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Results
RGB RGBD RGBD  

(No Noise)
RGBD  

(No Stop)

LSTM + Imitation 0.10 0.14 0.15 0.18

LSTM + RL 0.10 0.13 0.14 0.17

Occupancy Maps + 
FBE + RL N/A 0.26 0.31 0.24

Active Neural SLAM 0.23 0.29 0.35 0.39

Neural Topological 
SLAM 0.38 0.43 0.45 0.60

End-to-end  
Learning

Modular 
Metric Maps

Topological 
Maps
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LSTM + Imitation 0.10 0.14 0.15 0.18

LSTM + RL 0.10 0.13 0.14 0.17

Occupancy Maps + 
FBE + RL N/A 0.26 0.31 0.24

Active Neural SLAM 0.23 0.29 0.35 0.39
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Robustness to 
Pose Noise

NTS is better 
than occupancy 
map models, 
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Sequential Goals and Ablations

RGBD - No stop RGB - No Noise
Model Easy Med. Hard Overall Easy Med. Hard Overall

ResNet + GRU + IL 0.76 0.28 0.10 0.38 0.71 0.18 0.06 0.32
Target-driven RL [47] 0.89 0.45 0.21 0.52 0.69 0.22 0.07 0.33
Metric Spatial Map + RL [9] 0.89 0.45 0.21 0.52 0.70 0.24 0.11 0.35
Metric Spatial Map + FBE + RL 0.92 0.46 0.29 0.56 0.78 0.46 0.23 0.49
Active Neural SLAM (ANS) [6] 0.93 0.50 0.32 0.58 0.79 0.53 0.30 0.54
Neural Topological SLAM (NTS) 0.94 0.70 0.60 0.75 0.87 0.60 0.46 0.64

Table 2: No stop and no noise. Success rate of the proposed model NTS and the baselines without stop action (left) and without motion
noise (right) in the RGBD setting.

1XPEHU�RI�VHTXHQWLDO�JRDOV

63
/

����

����

����

����

����

����

� � � � �

176 176�Z?R�*UDSK 176�Z�R�6FRUH�)XQFWLRQ

Figure 8: Performance of the proposed model NTS and two ablations as a function of number of sequential goals.

6.1. Ablations and Sequential Goals

In this subsection, we evaluate the proposed model on se-
quential goals in a single episode and study the importance
of the topological map or the graph and the Semantic Score
Predictor (FS). For creating a test episode with sequen-
tial goals, we randomly sample a goal between 1.5m to 5m
away from the last goal. The agent gets a time budget of
500 timesteps for each goal. We consider two ablations:

NTS w/o Graph. We pick the direction with the highest
score in the current image greedily, not updating or using
the graph over time. Intuitively, the performance of this ab-
lation should deteriorate as the number of sequential goals
increases as it has no memory of past observations.

Neural Topological SLAM w/o Score Function. In this
ablation, we do not use the Semantic Score Predictor (FS)
and pick a ghost node randomly as the long-term goal when
the Goal Image is not localized in the current graph. In-
tuitively, the performance of this ablation should improve
with the increase in the number of sequential goals, as ran-
dom exploration would build the graph over time and in-
crease the likelihood of the Goal Image being localized.

We report the success rate and SPL of NTS and the two
ablations as a function of the number of sequential goals
in Figure 8. Success, in this case, is defined as the ra-
tio of goals reached by the agent across a test set of 1000
episodes. Firstly, the performance of NTS is considerably
higher than both the ablations, indicating the importance of
both the components. The performance of all the models
decreases with an increase in the number of sequential goals

because if the agent fails to reach an intermediate goal, there
is a high chance that the subsequent goals are farther away.
However, the performance gap between NTS and NTS w/o
Score Function decreases and the performance gap between
NTS and NTS w/o Graph increases with increase in the
number of sequential goals as expected. This indicates that
the topological map becomes more important over time as
the agent explores a new environment, and while the Se-
mantic Score Predictor is the most important at the begin-
ning to explore efficiently.

7. Discussion

We designed topological representations for space that
leverage semantics and afford coarse geometric reason-
ing. We showed how we can build such representation au-
tonomously and use them for the task of image-goal navi-
gation. Topological representations provided robustness to
actuation noise, while semantic features stored at nodes al-
lowed the use of statistical regularities for efficient explo-
ration in novel environments. We showed how advances
made in this paper make it possible to study this task in
settings where no prior experience from the environment is
available, resulting in a relative improvement of over 50%.
In the future, we plan to deploy our models on real robots.
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But, at the same 
time, importance of 
the  topological 
representation  
increases

Semantic score function 
improves efficiency when no 
prior experience with 
environment is available.

As experience in environment 
increases, utility of semantic 
function decreases
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