Neural Topological SLAM for Visual Navigation

Webpage: https://devendrachaplot.github.io/projects/Neural-Topological-SLAM

Devendra Singh Chaplot

Carnegie Mellon University

Ruslan Salakhutdinov

CVPR-2020

Abhinav Gupta

Saurabh Gupta

tacebook Artificial Intelligence Research

Semantic Priors and Common-Sense

- Humans use semantic priors and common-sense to explore and navigate everyday
- Most navigation algorithms struggle to do so

Semantic Priors and Common-Sense

- Humans use semantic priors and common-sense to explore and navigate everyday
- Most navigation algorithms struggle to do so

• Agent observations are panoramic images

- Agent observations are panoramic images
- Take actions to navigate to the goal location

- Agent observations are panoramic images Take actions to navigate to the goal location Take the `stop' action at the goal location

- Agent observations are panoramic images Take actions to navigate to the goal location Take the `stop' action at the goal location
- Sequential goals

Prior work

Prior Work

- + Reward
- Reward

End-to-end Learning

- High sample complexity
- Ineffective in large environments \bullet

Prior Work

- + Reward
- Reward

End-to-end Learning

- High sample complexity
- Ineffective in large environments

Modular Metric Maps

- Can not learn semantic priors
- Pose error accumulation

Topological Maps

Topological Maps

Observation

- **Nodes**: areas
- **Regular nodes**: Explored areas
- Ghost nodes: Unexplored areas

O Agent's Current Node Regular Nodes

Observation

Goal Image

- **Nodes**: areas
- **Regular nodes**: Explored areas
- Ghost nodes: Unexplored areas

O Agent's Current Node Regular Nodes

Observation

Goal Image

- **Nodes**: areas
- **Regular nodes**: Explored areas
- Ghost nodes: Unexplored areas

O Agent's Current Node Regular Nodes

Observation

Goal Image

- **Nodes**: areas
- **Regular nodes**: Explored areas
- Ghost nodes: Unexplored areas

O Agent's Current Node Regular Nodes • Ghost Nodes

Observation

Goal Image

- **Nodes**: areas
- **Regular nodes**: Explored areas
- Ghost nodes: Unexplored areas

O Agent's Current Node Regular Nodes • Ghost Nodes

Observation

Goal Image

- **Nodes**: areas
- **Regular nodes**: Explored areas
- Ghost nodes: Unexplored areas
- O Agent's Current Node Regular Nodes • Ghost Nodes
- **Edges**: Spatial relationship between nodes

Four learnable functions

Four learnable functions

 $\mathcal{F}_G(I_1)$ = Geometric Prediction: Free directions $\mathcal{F}_S(I_1, I_2)$ = Semantic Prediction: Closeness to target $\mathcal{F}_L(I_1, I_2)$ = Localization $\mathcal{F}_R(I_1, I_2)$ = Relative Pose Prediction

Geometric Prediction

Geometric Prediction

$\mathcal{F}_G(I_1)$ = Geometric Prediction: Free directions

Geometric Explorable Area Prediction (\mathcal{F}_G)

Semantic Prediction

Semantic Prediction

$\mathcal{F}_{S}(I_{1}, I_{2})$ = Semantic Prediction: Closeness to target

Localization

Localization

$\mathcal{F}_L(I_1, I_2)$ = Localization

$$\mathsf{calization}(\mathscr{F}_L) \longrightarrow \mathbf{0}$$

Relative Pose Prediction

$\mathcal{F}_R(I_1, I_2) = \text{Relative Pose}$

- $\mathcal{F}_G(I_1)$ = Geometric Prediction: Free directions
- $\mathcal{F}_{S}(I_{1}, I_{2})$ = Semantic Prediction: Closeness to target
- $\mathcal{F}_L(I_1, I_2)$ = Localization
- $\mathcal{F}_R(I_1, I_2)$ = Relative Pose Prediction

 $\begin{aligned} \mathscr{F}_G(I_1) &= \text{Geometric Prediction: Free directions} \\ \mathscr{F}_S(I_1, I_2) &= \text{Semantic Prediction: Closeness to target} \\ \mathscr{F}_L(I_1, I_2) &= \text{Localization} \\ \mathscr{F}_R(I_1, I_2) &= \text{Relative Pose Prediction} \end{aligned}$

 $\mathcal{F}_G(I_1)$ = Geometric Prediction: Free directions $\mathcal{F}_S(I_1, I_2)$ = Semantic Prediction: Closeness to target $\mathcal{F}_L(I_1, I_2)$ = Localization $\mathcal{F}_R(I_1, I_2)$ = Relative Pose Prediction

)

)

)

 $\begin{aligned} \mathcal{F}_{L}(I_{1},I_{2}) \\ \mathcal{F}_{S}(I_{1},I_{2}) \\ \mathcal{F}_{R}(I_{1},I_{2}) \end{aligned}$

Global Policy

 $\begin{aligned} \mathscr{F}_G(I_1) &= \text{Geometric Prediction: Free directions} \\ \mathscr{F}_S(I_1, I_2) &= \text{Semantic Prediction: Closeness to target} \\ \mathscr{F}_L(I_1, I_2) &= \text{Localization} \\ \mathscr{F}_R(I_1, I_2) &= \text{Relative Pose Prediction} \end{aligned}$

)

Single supervised learning model

Single supervised learning model

- No reinforcement learning, no interaction needed
- Can be trained completely with static data

Observation

Goal Image

Topological Map and Pose

Observation

Observation

Goal Image

Topological Map and Pose

Node Locations

Ghost nodes

Selected Ghost node

Observation

Goal Image

Topological Map and Pose

Node Locations

Ghost nodes

Selected Ghost node

Observation

Observation

Observation

Goal Image

Observation

Goal Image

Results

		RGB	RGBD	RGBD (No Noise)	RGBD (No Stop)
End-to-end Learning	LSTM + Imitation	0.10	0.14	0.15	0.18
	LSTM + RL	0.10	0.13	0.14	0.17
Modular Metric Maps	Occupancy Maps + FBE + RL	N/A	0.26	0.31	0.24
	Active Neural SLAM	0.23	0.29	0.35	0.39
Topological Maps	Neural Topological SLAM	0.38	0.43	0.45	0.60

Results

RGBD	RGBD (No Noise)	RGBD (No Stop)
0.14	0.15	0.18
0.13	0.14	0.17
0.26	0.31	0.24
0.29	0.35	0.39
0.43	0.45	0.60

NTS is better than occupancy map models, captures and uses semantic priors.

Sequential Goals and Ablations

SPL

Sequential Goals and Ablations

Semantic score function improves efficiency when no prior experience with environment is available.

Neural Topological SLAM for Visual Navigation Devendra Singh Chaplot, Ruslan Salakhutdinov, Abhinav Gupta, Saurabh Gupta *CVPR 2020*

Webpage: <u>https://devendrachaplot.github.io/projects/Neural-Topological-SLAM</u>

Thank you

Email: **Twitter:**

Devendra Singh Chaplot

Webpage: <u>http://devendrachaplot.github.io/</u> chaplot@cs.cmu.edu @dchaplot

Neural Topological SLAM for Visual Navigation Devendra Singh Chaplot, Ruslan Salakhutdinov, Abhinav Gupta, Saurabh Gupta *CVPR 2020*

Webpage: <u>https://devendrachaplot.github.io/projects/Neural-Topological-SLAM</u>

Thank you

Email: **Twitter:**

Devendra Singh Chaplot

Webpage: <u>http://devendrachaplot.github.io/</u> chaplot@cs.cmu.edu @dchaplot